Generic Programming for Mutually Recursive Families

Victor Cacciari Miraldo, Alejandro Serrano Mena

February 28, 2018

1

Universiteit Utrecht

Universiteit Utrecht

Why another generic programming library?

Motivation

Why another generic programming library?

No combinator-based GP library for mutually recursive families

Universiteit Utrecht

Motivation

Why another generic programming library?

- No combinator-based GP library for mutually recursive families
- GHC novel features allows combination of successful ideas from previous libraries

Universiteit Utrecht

Motivation

Why another generic programming library?

- No combinator-based GP library for mutually recursive families
- GHC novel features allows combination of sucessful ideas from previous libraries

Goal

Design and implement a "user-friendly" GP library for handling mutually recursive families

Translate class of datatypes to uniform representation

$$T \xrightarrow{from} Rep T$$

Universiteit Utrecht

Translate class of datatypes to uniform representation

Perform generic operation

$$T \xrightarrow{from} Rep \ T \xrightarrow{f} Rep \ U$$

Universiteit Utrecht

- Translate class of datatypes to uniform representation
- Perform generic operation
- Translate back to original representation

$$T \xrightarrow{from} Rep \ T \xrightarrow{f} Rep \ U \xrightarrow{to} U$$

Universiteit Utrecht

- Translate class of datatypes to uniform representation
- Perform generic operation
- Translate back to original representation

$$T \xrightarrow{from} Rep \ T \xrightarrow{f} Rep \ U \xrightarrow{to} U$$

class Generic t where from :: $t \rightarrow Rep \ t$ to :: $Rep \ t \rightarrow t$

> Faculty of Science Information and Computing Sciences

Class of representable datatypes

▶ Regular, Nested, Mutually Recursive, ...

Universiteit Utrecht

Class of representable datatypes

- Regular, Nested, Mutually Recursive, ...
- Representation of Recursion
 - Implicit versus Explicit

Class of representable datatypes

- Regular, Nested, Mutually Recursive, ...
- Representation of Recursion
 - Implicit versus Explicit
- Codes versus Pattern Functors

Universiteit Utrecht

Class of representable datatypes

- Regular, Nested, Mutually Recursive, ...
- Representation of Recursion
 - Implicit versus Explicit
- Codes versus Pattern Functors

These choices determine the flavour of generic functions:

- Expressivity
- Ease of use

The Landscape

	Pattern Functors	Codes
No Explicit Recursion	GHC.Generics	generics-sop
Simple Recursion	regular	generics-mrsop
Mutual Recursion	multirec	Remerice migoh

Universiteit Utrecht

Pattern Functors (GHC.Generics)

Defines the representation of a datatype directly:

6

Universiteit Utrecht

Pattern Functors (GHC.Generics)

Defines the representation of a datatype directly:

data Bin a = Leaf a | Fork (Bin a) (Bin a) Rep (Bin a) = K1 a:+: (K1 (Bin a) :*: K1 (Bin a))

 $\begin{array}{ll} {\rm data} \ (f:+:g) \ x = L1 \ (f \ x) \mid R1 \ (g \ x) \\ {\rm data} \ (f:::g) \ x = f \ x :::g \ x \\ {\rm data} \ K1 \ a \ x = K1 \ x \end{array}$

Universiteit Utrecht

Pattern Functors (GHC.Generics)

Defines the representation of a datatype directly:

data $Bin \ a = Leaf \ a$ $\mid Fork (Bin \ a) (Bin \ a)$ $Rep (Bin \ a) = K1 \ a$ $:+: (K1 \ (Bin \ a) :*: K1 \ (Bin \ a))$

 $\begin{array}{ll} {\rm data} \ (f:+:g) \ x = L1 \ (f \ x) \mid R1 \ (g \ x) \\ {\rm data} \ (f:::g) \ x = f \ x :::g \ x \\ {\rm data} \ K1 \ a \qquad x = K1 \ x \end{array}$

Note the absence of a pattern functor for handling recursion.

Universiteit Utrecht

Pattern Functors (regular)

The regular and multirec have a pattern functor for representing recursion.

data I x = I x

Now, Rep (Bin a) = K1 a :+: (I ::: I),

7

Universiteit Utrecht

Pattern Functors (regular)

The regular and multirec have a pattern functor for representing recursion.

data I x = I x

Now, Rep (Bin a) = K1 a :+: (I :*: I), which allows for explicit least fixpoints:

Bin $a \approx Rep (Bin a) (Bin a)$

7

Pattern Functors (regular)

The regular and multirec have a pattern functor for representing recursion.

data I x = I x

Now, Rep(Bin a) = K1 a :+: (I ::: I), which allows for explicit least fixpoints:

Bin $a \approx Rep (Bin a) (Bin a)$

Enabling generic recursion shemes:

 $cata :: (Rep \ f \ a \to a) \to f \to a$

Universiteit Utrecht

Pattern Functors

Regardless of recursion, class dispatch is used for generic functions:

class $GSize \ (rep :: * \to *)$ where $gsize :: rep \ x \to Int$ instance $(GSize \ f, GSize \ g) \Rightarrow GSize \ (f :+: g)$ where $gsize \ (L1 \ f) = gsize \ f$ $gsize \ (R1 \ g) = gsize \ g$

 $\begin{array}{l} \textit{size} :: \textit{Bin } a \rightarrow \textit{Int} \\ \textit{size} = \textit{gsize} \circ \textit{from} \end{array}$

Universiteit Utrecht

▶ No guarantee about the form of *Rep*:

Universiteit Utrecht

No guarantee about the form of *Rep*: product-of-sums is valid

Universiteit Utrecht

No guarantee about the form of *Rep*: product-of-sums is valid

▶ No guarantee about combinators used in *Rep*:

Universiteit Utrecht

No guarantee about the form of *Rep*: product-of-sums is valid

No guarantee about combinators used in *Rep*: *K1 Int* :+: *Maybe* breaks class-dispatch.

Universiteit Utrecht

- No guarantee about the form of *Rep*: product-of-sums is valid
- ► No guarantee about combinators used in *Rep*: *K1 Int* :+: *Maybe* breaks class-dispatch.
- Class-dispatch fragile and hard to extend.

Universiteit Utrecht

Codes (generics-sop)

• Addresses the issues with pattern functors.

Universiteit Utrecht

Codes (generics-sop)

• Addresses the issues with pattern functors.

► The language that representations are defined over.

data $Bin \ a = Leaf \ a$ $| Fork (Bin \ a) (Bin \ a)$ type family $Code \ (a :: *) \ :: '['[*]]$ type instance $Code \ (Bin \ a) = '['[a], '[Bin \ a, Bin \ a]]$

Universiteit Utrecht

Start with n-ary sums and products:

 $\begin{array}{ll} \textbf{data} \ NS :: (k \rightarrow *) \rightarrow [k] \rightarrow * \ \textbf{where} \\ Here \ :: f \ x \quad \rightarrow NS \ f \ (x \ ': xs) \\ There :: NS \ f \ xs \rightarrow NS \ f \ (x \ ': xs) \end{array}$

 $\begin{array}{ll} \textbf{data} \ NP :: (k \rightarrow *) \rightarrow [k] \rightarrow * \ \textbf{where} \\ Nil & :: & NP \ f \ '[] \\ Cons :: f \ x \rightarrow NP \ f \ xs \rightarrow NP \ f \ (x \ ': xs) \end{array}$

data I x = I x

Faculty of Science Information and Computing Sciences

Start with n-ary sums and products:

 $\begin{array}{ll} \textbf{data} \ NS :: (k \rightarrow *) \rightarrow [k] \rightarrow * \ \textbf{where} \\ Here \ :: f \ x \quad \rightarrow NS \ f \ (x \ ': xs) \\ There :: NS \ f \ xs \rightarrow NS \ f \ (x \ ': xs) \end{array}$

 $\begin{array}{ll} \textbf{data} \ NP :: (k \rightarrow *) \rightarrow [k] \rightarrow * \ \textbf{where} \\ Nil & :: & NP \ f \ '[] \\ Cons :: f \ x \rightarrow NP \ f \ xs \rightarrow NP \ f \ (x \ ': xs) \end{array}$

data I x = I x

Define the representation:

type $Rep = NS \ (NP \ I) :: '['[*]] \rightarrow *$

Universiteit Utrecht

type $Rep = NS (NP \ I) :: '['[*]] \rightarrow *$ data $Bin \ a = Leaf \ a$ $\mid Fork (Bin \ a) (Bin \ a)$

Universiteit Utrecht

type $Rep = NS (NP \ I) :: '['[*]] \rightarrow *$ data $Bin \ a = Leaf \ a$ $| Fork (Bin \ a) (Bin \ a)$

Recall the *Tree* example:

type instance Code $(Bin \ a) = '['[a], '[Bin \ a, Bin \ a]]$ leaf :: $a \to Rep \ (Code \ (Tree \ a))$ leaf $e = Here \ (Cons \ e \ Nil)$

> Faculty of Science Information and Computing Sciences

Generic Functionality (generics-sop)

Codes allow for combinators instead of class-dispatch:

$$elimNP :: (orall \ k \ . \ f \ k
ightarrow a)
ightarrow NP \ f \ xs
ightarrow [a] \\ elimNS :: (orall \ k \ . \ f \ k
ightarrow a)
ightarrow NS \ f \ xs
ightarrow a$$

Universiteit Utrecht

Generic Functionality (generics-sop)

Codes allow for combinators instead of class-dispatch:

$$elimNP :: (\forall \ k \ . \ f \ k
ightarrow a)
ightarrow NP \ f \ xs
ightarrow [a] \\ elimNS :: (\forall \ k \ . \ f \ k
ightarrow a)
ightarrow NS \ f \ xs
ightarrow a$$

class Size a where size :: $a \rightarrow Int$

 $\begin{array}{l} gsize :: (Generic \; a, All2 \; Size \; (Code \; a)) \Rightarrow a \rightarrow Int \\ gsize = succ \circ sum \circ elimNS \; (elimNP \; (size \circ unI)) \circ from \\ \textbf{where} \; unI \; (I \; x) = x \end{array}$

Universiteit Utrecht

Generic Functionality (generics-sop)

Codes allow for combinators instead of class-dispatch:

$$elimNP :: (\forall \ k \ . \ f \ k
ightarrow a)
ightarrow NP \ f \ xs
ightarrow [a] \\ elimNS :: (\forall \ k \ . \ f \ k
ightarrow a)
ightarrow NS \ f \ xs
ightarrow a$$

class Size a where size :: $a \rightarrow Int$

 $\begin{array}{l} gsize :: (Generic \; a, All2 \; Size \; (Code \; a)) \Rightarrow a \rightarrow Int \\ gsize = succ \circ sum \circ elimNS \; (elimNP \; (size \circ unI)) \circ from \\ \textbf{where} \; unI \; (I \; x) = x \end{array}$

Still: no explicit recursion: typeclass and complicated constraints.

Mutual Recursion (generics-mrsop)

Start with *Rep* as before:

data I x = I x

type Rep (f :: '['[*]])= NS (NP I) f

Universiteit Utrecht

Mutual Recursion (generics-mrsop)

Add codes to handle a single recursive position:

data $Atom = I | KInt | \dots$ data $NA :: * \rightarrow Atom \rightarrow *$ where $NA_I :: x \rightarrow NA x I$ $NA_K :: Int \rightarrow NA x KInt$

type Rep (x :: *) (f :: '['[Atom]])= NS (NP (NA x)) f

Universiteit Utrecht

Mutual Recursion (generics-mrsop)

Augment codes to have n recursive positions:

data Atom = I $Nat | KInt | \dots$ data $NA :: (Nat \rightarrow *) \rightarrow Atom \rightarrow *$ where $NA_I :: x n \rightarrow NA x (I n)$ $NA_K :: Int \rightarrow NA x KInt$

type $Rep (x :: Nat \rightarrow *) (f :: '['[Atom]])$ = NS (NP (NA x)) f

Universiteit Utrecht

Example (generics-mrsop)

data *RTree* a = RTree a (*Forest* a) **data** *Forest* $a = Nil \mid Cons$ (*RTree* a) (*Forest* a)

type Fam = '[RTree Int, Forest Int]

Universiteit Utrecht

Example (generics-mrsop)

data RTree $a = RTree \ a \ (Forest \ a)$ data Forest $a = Nil \mid Cons \ (RTree \ a) \ (Forest \ a)$

type Fam = '[RTree Int, Forest Int]

type $CodeRTree = '['[KInt, I \ 1]]$ **type** $CodeForest = '['[], '[I \ 0, I \ 1]]$ **type** Codes = '[CodeRTree, CodeForest]

Universiteit Utrecht

Example (generics-mrsop)

data *RTree* a = RTree a (*Forest* a) **data** *Forest* $a = Nil \mid Cons$ (*RTree* a) (*Forest* a)

type Fam = '[RTree Int, Forest Int]

type $CodeRTree = '['[KInt, I \ 1]]$ **type** $CodeForest = '['[], '[I \ 0, I \ 1]]$ **type** Codes = '[CodeRTree, CodeForest]

instance Family Fam Codes where

Universiteit Utrecht

▶ Define a family: *fam* :: '[*]

Universiteit Utrecht

- ▶ Define a family: *fam* :: '[*]
- Define its codes: codes :: '['[Atom]]]

- ▶ Define a family: *fam* :: '[*]
- ▶ Define its codes: *codes* :: *'*[*'*[*Atom*]]]
- Define lookup:

type family Lkup (ls :: '[k]) (n :: Nat) :: k where Lkup '[] = TypeError "Out of bounds" Lkup (x ': xs) Z = xLkup (x ': xs) (S n) = Lkup xs n

Universiteit Utrecht

- ▶ Define a family: *fam* :: '[*]
- ▶ Define its codes: *codes* :: *'*[*'*[*'*[*Atom*]]]
- Define lookup:

type family Lkup (ls :: '[k]) (n :: Nat) :: k where Lkup '[] = TypeError "Out of bounds" Lkup (x ': xs) Z = xLkup (x ': xs) (S n) = Lkup xs n

Then, finally, the *i*-th type is represented by:

 $Rep \; (Lkup \; fam) \; (Lkup \; i \; codes)$

Universiteit Utrecht

- ▶ Define a family: *fam* :: '[*]
- ▶ Define its codes: *codes* :: *'*[*'*[*'*[*Atom*]]]
- Define lookup:

type family Lkup (ls :: '[k]) (n :: Nat) :: k where Lkup '[] = TypeError "Out of bounds" Lkup (x ': xs) Z = xLkup (x ': xs) (S n) = Lkup xs n

Then, finally, the *i*-th type is represented by:

 $Rep \ (Lkup \ fam) \ (Lkup \ i \ codes)$

Lkup can't be partially applied though.

Wrapping it up (generics-mrsop)

Create an El type to be able to partially apply it and wrap it all in a typeclass:

Universiteit Utrecht

Wrapping it up (generics-mrsop)

Create an El type to be able to partially apply it and wrap it all in a typeclass:

data $El :: '[*] \rightarrow Nat \rightarrow *$ where $El :: Lkup \ fam \ ix \rightarrow El \ fam \ ix$

class Family (fam :: '[*]) (codes :: '['[Atom]]]) where
from :: SNat ix

- ightarrow El fam ix
- $\rightarrow Rep \; (El \; fam) \; (Lkup \; codes \; ix)$
- to :: SNat ix
 - $\rightarrow Rep (El fam) (Lkup codes ix)$
 - \rightarrow El fam ix

► The data Atom = I Nat | ... type might seem too permissive

Universiteit Utrecht

- ► The data Atom = I Nat | ... type might seem too permissive
- ► One solution: data Atom n = I (Fin n) | ... Too complicated in Haskell.

Universiteit Utrecht

- ► The data Atom = I Nat | ... type might seem too permissive
- ► One solution: data Atom n = I (Fin n) | ... Too complicated in Haskell.
- ► In fact, there is no problem: one could define: type CodeRTree = '['[KInt, I 42]], the instance would be impossible to write.

- ► The data Atom = I Nat | ... type might seem too permissive
- ► One solution: data Atom n = I (Fin n) | ... Too complicated in Haskell.
- ► In fact, there is no problem: one could define: type CodeRTree = '['[KInt, I 42]], the instance would be impossible to write.
- Malformed codes \Rightarrow uninhabitable representations.
- Errors are caught at compile time.

Deep encoding comes for free!

newtype Fix codes ix = Fix (Rep (Fix codes) (Lkup codes ix))

Universiteit Utrecht

Deep encoding comes for free!

newtype Fix codes ix = Fix (Rep (Fix codes) (Lkup codes ix))

 $\begin{array}{l} deep ::: (Family \; fam \; codes) \\ \Rightarrow El \; fam \; ix \rightarrow Fix \; codes \; ix \\ deep = Fix \circ mapRep \; deep \circ from \end{array}$

Deep encoding comes for free!

newtype Fix codes ix = Fix (Rep (Fix codes) (Lkup codes ix))

 $\begin{array}{l} deep :: (Family \ fam \ codes) \\ \Rightarrow \ El \ fam \ ix \rightarrow Fix \ codes \ ix \\ deep = Fix \circ mapRep \ deep \circ from \end{array}$

- ▶ provide recursion schemes (*cata*, *ana*, *synthesize*, etc)
- No need to carry constraints around

Universiteit Utrecht

Deep encoding comes for free!

newtype Fix codes ix = Fix (Rep (Fix codes) (Lkup codes ix))

deep :: (Family fam codes) $\Rightarrow El fam ix \rightarrow Fix codes ix$ $deep = Fix \circ mapRep \ deep \circ from$

- ▶ provide recursion schemes (*cata*, *ana*, *synthesize*, etc)
- No need to carry constraints around

 $\begin{array}{l} gsize :: (Family \; fam \; codes) \\ \Rightarrow \; El \; fam \; ix \rightarrow Int \\ gsize = \; cata \; (succ \circ sum \circ elimNP \; (elimNA \; id)) \circ deep \end{array}$

Universiteit Utrecht

Custom Opaque Types

Recall our definition of Atom:

data $Atom = I \ Nat \mid KInt \mid ...$ data $NA :: (Nat \rightarrow *) \rightarrow Atom$ $\rightarrow *$ where $NA_I :: x \ n \rightarrow NA \ x \ (I \ n)$ $NA_K :: Int \rightarrow NA \ x \ KInt$

Universiteit Utrecht

Custom Opaque Types

Add another parameter to it:

data $Atom \ kon = I \ Nat \mid K \ kon$ data $NA :: (kon \rightarrow *) \rightarrow (Nat \rightarrow *) \rightarrow Atom \ kon$ $\rightarrow * \ where$ $NA_I :: x \ n \rightarrow NA \ ki \ x \ (I \ n)$ $NA_K :: ki \ k \rightarrow NA \ ki \ x \ (K \ k)$

Universiteit Utrecht

Custom Opaque Types

Add another parameter to it:

data $Atom \ kon = I \ Nat \mid K \ kon$ data $NA :: (kon \rightarrow *) \rightarrow (Nat \rightarrow *) \rightarrow Atom \ kon$ $\rightarrow * \ where$ $NA_I :: x \ n \rightarrow NA \ ki \ x \ (I \ n)$ $NA_K :: ki \ k \rightarrow NA \ ki \ x \ (K \ k)$

Define a kind for opaque types and their interpretation:

data $Opaque = O_Int | O_Float$ data $OpaqueSingl :: Opaque \rightarrow *$ where $OS_Int :: Int \rightarrow OpaqueSingl O_Int$ $OS_Float :: Float \rightarrow OpaqueSingl O_Float$

Universiteit Utrecht

Custom opaque types.

Universiteit Utrecht

Custom opaque types.

Zippers for mutually recursive families.

Universiteit Utrecht

Custom opaque types.

Zippers for mutually recursive families.

▶ Automatic *Family* generation with Template Haskell.

Universiteit Utrecht

Custom opaque types.

Zippers for mutually recursive families.

- ▶ Automatic *Family* generation with Template Haskell.
- Metadata support inspired by generics-sop.

Universiteit Utrecht

▶ Found two bugs in GHC: #14987 and #15517 (closed)

Universiteit Utrecht

▶ Found two bugs in GHC: #14987 and #15517 (closed)

- Working with deep representations is simpler:
 - Recursion schemes
 - No need to carry constraints around

▶ Found two bugs in GHC: #14987 and #15517 (closed)

- Working with deep representations is simpler:
 - Recursion schemes
 - No need to carry constraints around
- Very powerful tool to work with generic AST's

▶ Found two bugs in GHC: #14987 and #15517 (closed)

- Working with deep representations is simpler:
 - Recursion schemes
 - No need to carry constraints around
- Very powerful tool to work with generic AST's
- Curious about handling GADTs? Join Haskell Symposium tomorrow at 9h30!

Universiteit Utrecht

Use it and Hack it!

https://hackage.haskell.org/package/generics-mrsop

Universiteit Utrecht

Generic Programming for Mutually Recursive Families

Victor Cacciari Miraldo, Alejandro Serrano Mena

February 28, 2018

Universiteit Utrecht