
Faculty of Science
Information and Computing Sciences

1

Generic Programming for Mutually
Recursive Families

Victor Cacciari Miraldo, Alejandro Serrano Mena
February 28, 2018



Faculty of Science
Information and Computing Sciences

2

Motivation

Why another generic programming library?

▶ No combinator-based GP library for mutually recursive
families

▶ GHC novel features allows combination of sucessful ideas
from previous libraries

Goal
Design and implement a “user-friendly” GP library for handling
mutually recursive families



Faculty of Science
Information and Computing Sciences

2

Motivation

Why another generic programming library?

▶ No combinator-based GP library for mutually recursive
families

▶ GHC novel features allows combination of sucessful ideas
from previous libraries

Goal
Design and implement a “user-friendly” GP library for handling
mutually recursive families



Faculty of Science
Information and Computing Sciences

2

Motivation

Why another generic programming library?

▶ No combinator-based GP library for mutually recursive
families

▶ GHC novel features allows combination of sucessful ideas
from previous libraries

Goal
Design and implement a “user-friendly” GP library for handling
mutually recursive families



Faculty of Science
Information and Computing Sciences

2

Motivation

Why another generic programming library?

▶ No combinator-based GP library for mutually recursive
families

▶ GHC novel features allows combination of sucessful ideas
from previous libraries

Goal
Design and implement a “user-friendly” GP library for handling
mutually recursive families



Faculty of Science
Information and Computing Sciences

3

Generic Programming Primer

▶ Translate class of datatypes to uniform representation

▶ Perform generic operation

▶ Translate back to original representation

T from // Rep T

class Generic t where
from :: t → Rep t
to :: Rep t → t



Faculty of Science
Information and Computing Sciences

3

Generic Programming Primer

▶ Translate class of datatypes to uniform representation

▶ Perform generic operation

▶ Translate back to original representation

T from // Rep T f // Rep U

class Generic t where
from :: t → Rep t
to :: Rep t → t



Faculty of Science
Information and Computing Sciences

3

Generic Programming Primer

▶ Translate class of datatypes to uniform representation

▶ Perform generic operation

▶ Translate back to original representation

T from // Rep T f // Rep U to // U

class Generic t where
from :: t → Rep t
to :: Rep t → t



Faculty of Science
Information and Computing Sciences

3

Generic Programming Primer

▶ Translate class of datatypes to uniform representation

▶ Perform generic operation

▶ Translate back to original representation

T from // Rep T f // Rep U to // U

class Generic t where
from :: t → Rep t
to :: Rep t → t



Faculty of Science
Information and Computing Sciences

4

The Design Space

▶ Class of representable datatypes
▶ Regular, Nested, Mutually Recursive, ...

▶ Representation of Recursion
▶ Implicit versus Explicit

▶ Codes versus Pattern Functors

These choices determine the flavour of generic functions:

▶ Expressivity
▶ Ease of use



Faculty of Science
Information and Computing Sciences

4

The Design Space

▶ Class of representable datatypes
▶ Regular, Nested, Mutually Recursive, ...

▶ Representation of Recursion
▶ Implicit versus Explicit

▶ Codes versus Pattern Functors

These choices determine the flavour of generic functions:

▶ Expressivity
▶ Ease of use



Faculty of Science
Information and Computing Sciences

4

The Design Space

▶ Class of representable datatypes
▶ Regular, Nested, Mutually Recursive, ...

▶ Representation of Recursion
▶ Implicit versus Explicit

▶ Codes versus Pattern Functors

These choices determine the flavour of generic functions:

▶ Expressivity
▶ Ease of use



Faculty of Science
Information and Computing Sciences

4

The Design Space

▶ Class of representable datatypes
▶ Regular, Nested, Mutually Recursive, ...

▶ Representation of Recursion
▶ Implicit versus Explicit

▶ Codes versus Pattern Functors

These choices determine the flavour of generic functions:

▶ Expressivity
▶ Ease of use



Faculty of Science
Information and Computing Sciences

5

The Landscape

Pattern Functors Codes

No Explicit Recursion GHC.Generics generics-sop

Simple Recursion regular
generics-mrsop

Mutual Recursion multirec



Faculty of Science
Information and Computing Sciences

6

Pattern Functors (GHC.Generics)

Defines the representation of a datatype directly:

data Bin a = Leaf a
| Fork (Bin a) (Bin a)

Rep (Bin a) = K1 a
:+: (K1 (Bin a) :∗: K1 (Bin a))

data (f :+: g) x = L1 (f x) | R1 (g x)
data (f :∗: g) x = f x :∗: g x
data K1 a x = K1 x

Note the absence of a pattern functor for handling recursion.



Faculty of Science
Information and Computing Sciences

6

Pattern Functors (GHC.Generics)

Defines the representation of a datatype directly:

data Bin a = Leaf a
| Fork (Bin a) (Bin a)

Rep (Bin a) = K1 a
:+: (K1 (Bin a) :∗: K1 (Bin a))

data (f :+: g) x = L1 (f x) | R1 (g x)
data (f :∗: g) x = f x :∗: g x
data K1 a x = K1 x

Note the absence of a pattern functor for handling recursion.



Faculty of Science
Information and Computing Sciences

6

Pattern Functors (GHC.Generics)

Defines the representation of a datatype directly:

data Bin a = Leaf a
| Fork (Bin a) (Bin a)

Rep (Bin a) = K1 a
:+: (K1 (Bin a) :∗: K1 (Bin a))

data (f :+: g) x = L1 (f x) | R1 (g x)
data (f :∗: g) x = f x :∗: g x
data K1 a x = K1 x

Note the absence of a pattern functor for handling recursion.



Faculty of Science
Information and Computing Sciences

7

Pattern Functors (regular)

The regular and multirec have a pattern functor for
representing recursion.

data I x = I x

Now, Rep (Bin a) = K1 a :+: (I :∗: I ),

which allows for explicit least fixpoints:

Bin a ≈ Rep (Bin a) (Bin a)

Enabling generic recursion shemes:

cata :: (Rep f a → a) → f → a



Faculty of Science
Information and Computing Sciences

7

Pattern Functors (regular)

The regular and multirec have a pattern functor for
representing recursion.

data I x = I x

Now, Rep (Bin a) = K1 a :+: (I :∗: I ),
which allows for explicit least fixpoints:

Bin a ≈ Rep (Bin a) (Bin a)

Enabling generic recursion shemes:

cata :: (Rep f a → a) → f → a



Faculty of Science
Information and Computing Sciences

7

Pattern Functors (regular)

The regular and multirec have a pattern functor for
representing recursion.

data I x = I x

Now, Rep (Bin a) = K1 a :+: (I :∗: I ),
which allows for explicit least fixpoints:

Bin a ≈ Rep (Bin a) (Bin a)

Enabling generic recursion shemes:

cata :: (Rep f a → a) → f → a



Faculty of Science
Information and Computing Sciences

8

Pattern Functors

Regardless of recursion, class dispatch is used for generic
functions:

class GSize (rep :: ∗ → ∗) where
gsize :: rep x → Int

instance (GSize f , GSize g) ⇒ GSize (f :+: g) where
gsize (L1 f ) = gsize f
gsize (R1 g) = gsize g

. . .

size :: Bin a → Int
size = gsize ◦ from



Faculty of Science
Information and Computing Sciences

9

Pattern Functors Drawbacks

▶ No guarantee about the form of Rep:

product-of-sums is
valid

▶ No guarantee about combinators used in Rep:
K1 Int :+: Maybe breaks class-dispatch.

▶ Class-dispatch fragile and hard to extend.



Faculty of Science
Information and Computing Sciences

9

Pattern Functors Drawbacks

▶ No guarantee about the form of Rep: product-of-sums is
valid

▶ No guarantee about combinators used in Rep:
K1 Int :+: Maybe breaks class-dispatch.

▶ Class-dispatch fragile and hard to extend.



Faculty of Science
Information and Computing Sciences

9

Pattern Functors Drawbacks

▶ No guarantee about the form of Rep: product-of-sums is
valid

▶ No guarantee about combinators used in Rep:

K1 Int :+: Maybe breaks class-dispatch.

▶ Class-dispatch fragile and hard to extend.



Faculty of Science
Information and Computing Sciences

9

Pattern Functors Drawbacks

▶ No guarantee about the form of Rep: product-of-sums is
valid

▶ No guarantee about combinators used in Rep:
K1 Int :+: Maybe breaks class-dispatch.

▶ Class-dispatch fragile and hard to extend.



Faculty of Science
Information and Computing Sciences

9

Pattern Functors Drawbacks

▶ No guarantee about the form of Rep: product-of-sums is
valid

▶ No guarantee about combinators used in Rep:
K1 Int :+: Maybe breaks class-dispatch.

▶ Class-dispatch fragile and hard to extend.



Faculty of Science
Information and Computing Sciences

10

Codes (generics-sop)

▶ Addresses the issues with pattern functors.

▶ The language that representations are defined over.

data Bin a = Leaf a
| Fork (Bin a) (Bin a)

type family Code (a :: ∗) :: ′[′[∗]]
type instance Code (Bin a) = ′[′[a], ′[Bin a, Bin a]]



Faculty of Science
Information and Computing Sciences

10

Codes (generics-sop)

▶ Addresses the issues with pattern functors.

▶ The language that representations are defined over.

data Bin a = Leaf a
| Fork (Bin a) (Bin a)

type family Code (a :: ∗) :: ′[′[∗]]
type instance Code (Bin a) = ′[′[a], ′[Bin a, Bin a]]



Faculty of Science
Information and Computing Sciences

11

Interpreting Codes (generics-sop)

Start with n-ary sums and products:

data NS :: (k → ∗) → [k] → ∗ where
Here :: f x → NS f (x ′: xs)
There :: NS f xs → NS f (x ′: xs)

data NP :: (k → ∗) → [k] → ∗ where
Nil :: NP f ′[]
Cons :: f x → NP f xs → NP f (x ′: xs)

data I x = I x

Define the representation:

type Rep = NS (NP I ) :: ′[′[∗]] → ∗



Faculty of Science
Information and Computing Sciences

11

Interpreting Codes (generics-sop)

Start with n-ary sums and products:

data NS :: (k → ∗) → [k] → ∗ where
Here :: f x → NS f (x ′: xs)
There :: NS f xs → NS f (x ′: xs)

data NP :: (k → ∗) → [k] → ∗ where
Nil :: NP f ′[]
Cons :: f x → NP f xs → NP f (x ′: xs)

data I x = I x

Define the representation:

type Rep = NS (NP I ) :: ′[′[∗]] → ∗



Faculty of Science
Information and Computing Sciences

12

Interpreting Codes (generics-sop)

type Rep = NS (NP I ) :: ′[′[∗]] → ∗
data Bin a = Leaf a

| Fork (Bin a) (Bin a)

Recall the Tree example:

type instance Code (Bin a) = ′[′[a], ′[Bin a, Bin a]]
leaf :: a → Rep (Code (Tree a))
leaf e = Here (Cons e Nil)
bin :: Tree a → Tree a → Rep (Code (Tree a))
bin l r = There (Here (Cons l (Cons r Nil)))



Faculty of Science
Information and Computing Sciences

12

Interpreting Codes (generics-sop)

type Rep = NS (NP I ) :: ′[′[∗]] → ∗
data Bin a = Leaf a

| Fork (Bin a) (Bin a)

Recall the Tree example:

type instance Code (Bin a) = ′[′[a], ′[Bin a, Bin a]]
leaf :: a → Rep (Code (Tree a))
leaf e = Here (Cons e Nil)
bin :: Tree a → Tree a → Rep (Code (Tree a))
bin l r = There (Here (Cons l (Cons r Nil)))



Faculty of Science
Information and Computing Sciences

13

Generic Functionality (generics-sop)

Codes allow for combinators instead of class-dispatch:

elimNP :: (∀ k . f k → a) → NP f xs → [a]
elimNS :: (∀ k . f k → a) → NS f xs → a

class Size a where
size :: a → Int

gsize :: (Generic a, All2 Size (Code a)) ⇒ a → Int
gsize = succ ◦ sum ◦ elimNS (elimNP (size ◦ unI )) ◦ from

where unI (I x) = x

Still: no explicit recursion: typeclass and complicated
constraints.



Faculty of Science
Information and Computing Sciences

13

Generic Functionality (generics-sop)

Codes allow for combinators instead of class-dispatch:

elimNP :: (∀ k . f k → a) → NP f xs → [a]
elimNS :: (∀ k . f k → a) → NS f xs → a

class Size a where
size :: a → Int

gsize :: (Generic a, All2 Size (Code a)) ⇒ a → Int
gsize = succ ◦ sum ◦ elimNS (elimNP (size ◦ unI )) ◦ from

where unI (I x) = x

Still: no explicit recursion: typeclass and complicated
constraints.



Faculty of Science
Information and Computing Sciences

13

Generic Functionality (generics-sop)

Codes allow for combinators instead of class-dispatch:

elimNP :: (∀ k . f k → a) → NP f xs → [a]
elimNS :: (∀ k . f k → a) → NS f xs → a

class Size a where
size :: a → Int

gsize :: (Generic a, All2 Size (Code a)) ⇒ a → Int
gsize = succ ◦ sum ◦ elimNS (elimNP (size ◦ unI )) ◦ from

where unI (I x) = x

Still: no explicit recursion: typeclass and complicated
constraints.



Faculty of Science
Information and Computing Sciences

14

Mutual Recursion (generics-mrsop)

Start with Rep as before:

data I x = I x

type Rep (f :: ′[′[∗]])
= NS (NP I ) f



Faculty of Science
Information and Computing Sciences

14

Mutual Recursion (generics-mrsop)

Add codes to handle a single recursive position:

data Atom = I | KInt | . . .
data NA :: ∗ → Atom → ∗ where

NA_I :: x → NA x I
NA_K :: Int → NA x KInt

type Rep (x :: ∗) (f :: ′[′[Atom]])
= NS (NP (NA x)) f



Faculty of Science
Information and Computing Sciences

14

Mutual Recursion (generics-mrsop)

Augment codes to have n recursive positions:

data Atom = I Nat | KInt | . . .
data NA :: (Nat → ∗) → Atom → ∗ where

NA_I :: x n → NA x (I n)
NA_K :: Int → NA x KInt

type Rep (x :: Nat → ∗) (f :: ′[′[Atom]])
= NS (NP (NA x)) f



Faculty of Science
Information and Computing Sciences

15

Example (generics-mrsop)

data RTree a = RTree a (Forest a)
data Forest a = Nil | Cons (RTree a) (Forest a)

type Fam = ′[RTree Int, Forest Int]

type CodeRTree = ′[′[KInt, I 1]]
type CodeForest = ′[′[], ′[I 0, I 1]]
type Codes = ′[CodeRTree, CodeForest]

instance Family Fam Codes where
. . .



Faculty of Science
Information and Computing Sciences

15

Example (generics-mrsop)

data RTree a = RTree a (Forest a)
data Forest a = Nil | Cons (RTree a) (Forest a)

type Fam = ′[RTree Int, Forest Int]

type CodeRTree = ′[′[KInt, I 1]]
type CodeForest = ′[′[], ′[I 0, I 1]]
type Codes = ′[CodeRTree, CodeForest]

instance Family Fam Codes where
. . .



Faculty of Science
Information and Computing Sciences

15

Example (generics-mrsop)

data RTree a = RTree a (Forest a)
data Forest a = Nil | Cons (RTree a) (Forest a)

type Fam = ′[RTree Int, Forest Int]

type CodeRTree = ′[′[KInt, I 1]]
type CodeForest = ′[′[], ′[I 0, I 1]]
type Codes = ′[CodeRTree, CodeForest]

instance Family Fam Codes where
. . .



Faculty of Science
Information and Computing Sciences

16

Closing the Recursive Knot (generics-mrsop)

▶ Define a family: fam :: ′[∗]

▶ Define its codes: codes :: ′[′[′[Atom]]]
▶ Define lookup:

type family Lkup (ls :: ′[k]) (n :: Nat) :: k where
Lkup ′[] = TypeError “Out of bounds”
Lkup (x ′: xs) Z = x
Lkup (x ′: xs) (S n) = Lkup xs n

Then, finally, the i-th type is represented by:

Rep (Lkup fam) (Lkup i codes)

Lkup can’t be partially applied though.



Faculty of Science
Information and Computing Sciences

16

Closing the Recursive Knot (generics-mrsop)

▶ Define a family: fam :: ′[∗]
▶ Define its codes: codes :: ′[′[′[Atom]]]

▶ Define lookup:

type family Lkup (ls :: ′[k]) (n :: Nat) :: k where
Lkup ′[] = TypeError “Out of bounds”
Lkup (x ′: xs) Z = x
Lkup (x ′: xs) (S n) = Lkup xs n

Then, finally, the i-th type is represented by:

Rep (Lkup fam) (Lkup i codes)

Lkup can’t be partially applied though.



Faculty of Science
Information and Computing Sciences

16

Closing the Recursive Knot (generics-mrsop)

▶ Define a family: fam :: ′[∗]
▶ Define its codes: codes :: ′[′[′[Atom]]]
▶ Define lookup:

type family Lkup (ls :: ′[k]) (n :: Nat) :: k where
Lkup ′[] = TypeError “Out of bounds”
Lkup (x ′: xs) Z = x
Lkup (x ′: xs) (S n) = Lkup xs n

Then, finally, the i-th type is represented by:

Rep (Lkup fam) (Lkup i codes)

Lkup can’t be partially applied though.



Faculty of Science
Information and Computing Sciences

16

Closing the Recursive Knot (generics-mrsop)

▶ Define a family: fam :: ′[∗]
▶ Define its codes: codes :: ′[′[′[Atom]]]
▶ Define lookup:

type family Lkup (ls :: ′[k]) (n :: Nat) :: k where
Lkup ′[] = TypeError “Out of bounds”
Lkup (x ′: xs) Z = x
Lkup (x ′: xs) (S n) = Lkup xs n

Then, finally, the i-th type is represented by:

Rep (Lkup fam) (Lkup i codes)

Lkup can’t be partially applied though.



Faculty of Science
Information and Computing Sciences

16

Closing the Recursive Knot (generics-mrsop)

▶ Define a family: fam :: ′[∗]
▶ Define its codes: codes :: ′[′[′[Atom]]]
▶ Define lookup:

type family Lkup (ls :: ′[k]) (n :: Nat) :: k where
Lkup ′[] = TypeError “Out of bounds”
Lkup (x ′: xs) Z = x
Lkup (x ′: xs) (S n) = Lkup xs n

Then, finally, the i-th type is represented by:

Rep (Lkup fam) (Lkup i codes)

Lkup can’t be partially applied though.



Faculty of Science
Information and Computing Sciences

17

Wrapping it up (generics-mrsop)

Create an El type to be able to partially apply it and wrap it all
in a typeclass:

data El :: ′[∗] → Nat → ∗ where
El :: Lkup fam ix → El fam ix

class Family (fam :: ′[∗]) (codes :: ′[′[′[Atom]]]) where
from :: SNat ix

→ El fam ix
→ Rep (El fam) (Lkup codes ix)

to :: SNat ix
→ Rep (El fam) (Lkup codes ix)
→ El fam ix



Faculty of Science
Information and Computing Sciences

17

Wrapping it up (generics-mrsop)

Create an El type to be able to partially apply it and wrap it all
in a typeclass:

data El :: ′[∗] → Nat → ∗ where
El :: Lkup fam ix → El fam ix

class Family (fam :: ′[∗]) (codes :: ′[′[′[Atom]]]) where
from :: SNat ix

→ El fam ix
→ Rep (El fam) (Lkup codes ix)

to :: SNat ix
→ Rep (El fam) (Lkup codes ix)
→ El fam ix



Faculty of Science
Information and Computing Sciences

18

Well formed Representations Only

▶ The data Atom = I Nat | . . . type might seem too
permissive

▶ One solution: data Atom n = I (Fin n) | . . .
Too complicated in Haskell.

▶ In fact, there is no problem: one could define:
type CodeRTree = ′[′[KInt, I 42]], the instance would be
impossible to write.

▶ Malformed codes ⇒ uninhabitable representations.

▶ Errors are caught at compile time.



Faculty of Science
Information and Computing Sciences

18

Well formed Representations Only

▶ The data Atom = I Nat | . . . type might seem too
permissive

▶ One solution: data Atom n = I (Fin n) | . . .
Too complicated in Haskell.

▶ In fact, there is no problem: one could define:
type CodeRTree = ′[′[KInt, I 42]], the instance would be
impossible to write.

▶ Malformed codes ⇒ uninhabitable representations.

▶ Errors are caught at compile time.



Faculty of Science
Information and Computing Sciences

18

Well formed Representations Only

▶ The data Atom = I Nat | . . . type might seem too
permissive

▶ One solution: data Atom n = I (Fin n) | . . .
Too complicated in Haskell.

▶ In fact, there is no problem: one could define:
type CodeRTree = ′[′[KInt, I 42]], the instance would be
impossible to write.

▶ Malformed codes ⇒ uninhabitable representations.

▶ Errors are caught at compile time.



Faculty of Science
Information and Computing Sciences

18

Well formed Representations Only

▶ The data Atom = I Nat | . . . type might seem too
permissive

▶ One solution: data Atom n = I (Fin n) | . . .
Too complicated in Haskell.

▶ In fact, there is no problem: one could define:
type CodeRTree = ′[′[KInt, I 42]], the instance would be
impossible to write.

▶ Malformed codes ⇒ uninhabitable representations.

▶ Errors are caught at compile time.



Faculty of Science
Information and Computing Sciences

19

Deep versus Shallow

Deep encoding comes for free!

newtype Fix codes ix
= Fix (Rep (Fix codes) (Lkup codes ix))

deep :: (Family fam codes)
⇒ El fam ix → Fix codes ix

deep = Fix ◦ mapRep deep ◦ from

▶ provide recursion schemes (cata, ana, synthesize, etc)
▶ No need to carry constraints around

gsize :: (Family fam codes)
⇒ El fam ix → Int

gsize = cata (succ ◦ sum ◦ elimNP (elimNA id)) ◦ deep



Faculty of Science
Information and Computing Sciences

19

Deep versus Shallow

Deep encoding comes for free!

newtype Fix codes ix
= Fix (Rep (Fix codes) (Lkup codes ix))

deep :: (Family fam codes)
⇒ El fam ix → Fix codes ix

deep = Fix ◦ mapRep deep ◦ from

▶ provide recursion schemes (cata, ana, synthesize, etc)
▶ No need to carry constraints around

gsize :: (Family fam codes)
⇒ El fam ix → Int

gsize = cata (succ ◦ sum ◦ elimNP (elimNA id)) ◦ deep



Faculty of Science
Information and Computing Sciences

19

Deep versus Shallow

Deep encoding comes for free!

newtype Fix codes ix
= Fix (Rep (Fix codes) (Lkup codes ix))

deep :: (Family fam codes)
⇒ El fam ix → Fix codes ix

deep = Fix ◦ mapRep deep ◦ from

▶ provide recursion schemes (cata, ana, synthesize, etc)
▶ No need to carry constraints around

gsize :: (Family fam codes)
⇒ El fam ix → Int

gsize = cata (succ ◦ sum ◦ elimNP (elimNA id)) ◦ deep



Faculty of Science
Information and Computing Sciences

19

Deep versus Shallow

Deep encoding comes for free!

newtype Fix codes ix
= Fix (Rep (Fix codes) (Lkup codes ix))

deep :: (Family fam codes)
⇒ El fam ix → Fix codes ix

deep = Fix ◦ mapRep deep ◦ from

▶ provide recursion schemes (cata, ana, synthesize, etc)
▶ No need to carry constraints around

gsize :: (Family fam codes)
⇒ El fam ix → Int

gsize = cata (succ ◦ sum ◦ elimNP (elimNA id)) ◦ deep



Faculty of Science
Information and Computing Sciences

20

Custom Opaque Types
Recall our definition of Atom:

data Atom = I Nat | KInt | . . .
data NA :: (Nat → ∗) → Atom

→ ∗ where
NA_I :: x n → NA x (I n)
NA_K :: Int → NA x KInt

Define a kind for opaque types and their interpretation:

data Opaque = O_Int | O_Float
data OpaqueSingl :: Opaque → ∗ where

OS_Int :: Int → OpaqueSingl O_Int
OS_Float :: Float → OpaqueSingl O_Float



Faculty of Science
Information and Computing Sciences

20

Custom Opaque Types
Add another parameter to it:

data Atom kon = I Nat | K kon
data NA :: (kon → ∗) → (Nat → ∗) → Atom kon

→ ∗ where
NA_I :: x n → NA ki x (I n)
NA_K :: ki k → NA ki x (K k)

Define a kind for opaque types and their interpretation:

data Opaque = O_Int | O_Float
data OpaqueSingl :: Opaque → ∗ where

OS_Int :: Int → OpaqueSingl O_Int
OS_Float :: Float → OpaqueSingl O_Float



Faculty of Science
Information and Computing Sciences

20

Custom Opaque Types
Add another parameter to it:

data Atom kon = I Nat | K kon
data NA :: (kon → ∗) → (Nat → ∗) → Atom kon

→ ∗ where
NA_I :: x n → NA ki x (I n)
NA_K :: ki k → NA ki x (K k)

Define a kind for opaque types and their interpretation:

data Opaque = O_Int | O_Float
data OpaqueSingl :: Opaque → ∗ where

OS_Int :: Int → OpaqueSingl O_Int
OS_Float :: Float → OpaqueSingl O_Float



Faculty of Science
Information and Computing Sciences

21

Other Features from generics-mrsop

▶ Custom opaque types.

▶ Zippers for mutually recursive families.

▶ Automatic Family generation with Template Haskell.

▶ Metadata support inspired by generics-sop.



Faculty of Science
Information and Computing Sciences

21

Other Features from generics-mrsop

▶ Custom opaque types.

▶ Zippers for mutually recursive families.

▶ Automatic Family generation with Template Haskell.

▶ Metadata support inspired by generics-sop.



Faculty of Science
Information and Computing Sciences

21

Other Features from generics-mrsop

▶ Custom opaque types.

▶ Zippers for mutually recursive families.

▶ Automatic Family generation with Template Haskell.

▶ Metadata support inspired by generics-sop.



Faculty of Science
Information and Computing Sciences

21

Other Features from generics-mrsop

▶ Custom opaque types.

▶ Zippers for mutually recursive families.

▶ Automatic Family generation with Template Haskell.

▶ Metadata support inspired by generics-sop.



Faculty of Science
Information and Computing Sciences

22

Lessons and Discussion

▶ Found two bugs in GHC: #14987 and #15517 (closed)

▶ Working with deep representations is simpler:
▶ Recursion schemes
▶ No need to carry constraints around

▶ Very powerful tool to work with generic AST’s

▶ Curious about handling GADTs?
Join Haskell Symposium tomorrow at 9h30!



Faculty of Science
Information and Computing Sciences

22

Lessons and Discussion

▶ Found two bugs in GHC: #14987 and #15517 (closed)

▶ Working with deep representations is simpler:
▶ Recursion schemes
▶ No need to carry constraints around

▶ Very powerful tool to work with generic AST’s

▶ Curious about handling GADTs?
Join Haskell Symposium tomorrow at 9h30!



Faculty of Science
Information and Computing Sciences

22

Lessons and Discussion

▶ Found two bugs in GHC: #14987 and #15517 (closed)

▶ Working with deep representations is simpler:
▶ Recursion schemes
▶ No need to carry constraints around

▶ Very powerful tool to work with generic AST’s

▶ Curious about handling GADTs?
Join Haskell Symposium tomorrow at 9h30!



Faculty of Science
Information and Computing Sciences

22

Lessons and Discussion

▶ Found two bugs in GHC: #14987 and #15517 (closed)

▶ Working with deep representations is simpler:
▶ Recursion schemes
▶ No need to carry constraints around

▶ Very powerful tool to work with generic AST’s

▶ Curious about handling GADTs?
Join Haskell Symposium tomorrow at 9h30!



Faculty of Science
Information and Computing Sciences

23

Conclusions

Use it and Hack it!
https://hackage.haskell.org/package/generics-mrsop



Faculty of Science
Information and Computing Sciences

24

Generic Programming for Mutually
Recursive Families

Victor Cacciari Miraldo, Alejandro Serrano Mena
February 28, 2018


