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Moࢢvaࢢon

From a blockchain parࢢcipant’s perspecࢢve:

• To start verifying, it needs a state.

• Tradiࢢonally, download and verify all transacࢢons since forever. This data
grows large.

• Instead, transfer just the necessary part of the state first.

• Fetch the other parts of the state as need arises.
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The Problem

1 To be able to start parࢢcipaࢢon in a blockchain-like system with parࢢal
state.

2 To verify this summary against some obtained hash.

3 To fetch and verify missing pieces over ,meࢢ amorࢢzing the cost of
starࢢng to verify.
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Verifier Comming Online

Newbie Verifier

Asks for 'summary'

Sends 'summary'

Verifies 'summary'

Asks for 'page'

Sends 'page'

Verifies 'page'
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Merkle Trees
[Merkle,1979]

Verificaࢢon of the state is not novel. One could useMerkle Trees to construct
proofs of membership or compare roots.
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Merkle Trees
[Merkle,1979]
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Merkle Root is the Top Hash.
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Prove L2 is member: give L2, hash 0-0 and hash 1.
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HAMM 101

DSL for combining key-value store components.

Quickly study different map architectures, eg:

Different add-ons alter the behavior of base maps.
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Interlude: This presentaࢢon

• hamm is under acࢢve development.

• Some of the content is novel from paper.

• Some code is slightly different.
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Cooking HAMM from Data.Map

Take Data.Map.lookup as an example:

lookup :: (Ord k)
⇒ k → Map k v → Maybe v
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Cooking HAMM from Data.Map

Abstract awayMap for a type variable c :: ∗ → ∗ → ∗

lookup :: (Ord k)
⇒ k → c k v → Maybe v
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Cooking HAMM from Data.Map

Abstract away Ord by a type family

lookup :: (IsMapCnstr c k v)
⇒ k → c k v → Maybe v
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Cooking HAMM from Data.Map

Allow for arbitrary errors

lookup :: (IsMapCnstr c k v)
⇒ k → c k v → Except (Err c) (Maybe v)
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Cooking HAMM from Data.Map

Parametrize everything with a Monad

lookup :: (IsMapCnstr m c k v,Monad m)
⇒ k → c k v → ExceptT (Err c) m (Maybe v)
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Cooking HAMM from Data.Map

Wrap it in a typeclass

class IsMap (c :: ∗ → ∗ → ∗) where
type Err c :: ∗
type IsMapCnstr m c k v :: Constraint
lookup :: (Monad m, IsMapCnstr m c k v)

⇒ k → c k v → ExceptT (Err c) m (Maybe v)
...
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Add-ons

• Have kind (∗ → ∗ → ∗) → ∗ → ∗ → ∗

• add-ons≈monad transformer

• Alter the implementaࢢon under same API

instance (IsMap c) ⇒ IsMap (BloomOf h m c) where
lookup k (BloomOf blf c)

| bloomMember k blf = lookup k c
| otherwise = return Nothing
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Meet the Add-ons

BloomOf h m Adds a bloom-filter with h hash funcࢢons andmmachine
words.

PartialOf Allows for the argument map to be absent.

PagesOf l Replicates the argument map on a tree structure following l.

CacheOf c p Adds a cache c with evicࢢon policy p.

BoundedCacheOf b c p Forces the size of the cache to never exceed b.
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Properࢢes

• Type-classes provide access to properࢢes satsified by certain
combinaࢢons of add-ons.

• Similar to how mtl implementsMonadReader,MonadError, etc.
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Properࢢes: Parࢢࢢoned

Combinaࢢon of add-ons containing PagesOf: supports noࢢon of “page” or
“parࢢࢢon”.

class (IsMap c) ⇒ Partitioned c where
type Partition c :: ∗ → ∗ → ∗
getPartition :: (IsMapCnstr m c k v)

⇒ Int
→ c k v
→ ErrM m c (Maybe (Partition c))
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Properࢢes: Cached

Combinaࢢon of add-ons containing CacheOf: supports a lookup that alters
the structure of the map, maintaining the evicࢢon policy.

class (IsMap c) ⇒ Cached c where
lookup :: (IsMapCnstr m c k v)

⇒ k
→ c k v
→ ErrM m c (Maybe (v, c k v))
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Examples
PWB_1BC

RB

CacheOf
BloomOf

1 20 n-3 n-2 n-1

RB RB RB
X X X

PagesOf

PartialOf PartialOf PartialOf PartialOf PartialOf PartialOf

A authenࢡcated tree, with possibly absent individual pages, and a cache act-
ing as a summary.
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Examples
PWB_Cascache

RB

CacheOf
BloomOf

i+1 i+2i n-3 n-2 n-1

RB RB RB
X X X

PagesOf

PartialOf PartialOf PartialOf PartialOf PartialOf PartialOf

RB

CacheOf
RB

CacheOf}
i+1

A fixed-point-like construcࢢon of just the summary of the previous state. Dif-
ferent evicࢢon policies might show interesࢢng differences.
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The Authenࢢcated Interface

• hamm supports proofs-of-membership

class (IsMap c) ⇒ IsAuthMap c where
type Ev c :: ∗
vlookup :: (IsMapCnstr m c k v)

⇒ k → c k v → ExceptT (Err c) m
(Maybe (v, Ev c))

rebuild :: (IsMapCnstr m c k v)
⇒ Proxy c → Ev c → k → v → Digest

Upon seing a successufl vlookup, we can rebuild a digest and check it
matches the merkle root of the map.
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The Authenࢢcated Interface
Example Instance

data PartialOf c k v = Missing Digest
| Present (c k v)

instance IsAuthMap c ⇒ IsAuthMap (PartialOf c) where
type Ev (PartialOf c) = Ev c
vlookup k (Missing ) = throwError ErrOnMissing
vlookup k (Present c) = withExceptT ErrOnPresent

$ vlookup k c
rebuild = rebuild (Proxy :: Proxy c)
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Experiment: Rouࢢne

• Insert 200000 keys in a map.

• Simulate transfering the “summary”.

• Perform n createOrUpdate operaࢢons, serving and counࢢng page misses
as they arise.
• Draw keys according to uniform and geometric distribuࢢons (99.99%)

• We assume 14ms latency and 16Mbps transfer speed.
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Experiment: Results
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Discussion
Bloom Filter

• Seemed like a great idea! Prevent unecessary page fetches.

• Turns out its not so great:
• Either too big to be transfered efficiently

• Or fills up quite fast and produces false posiࢢves.

• hamm allowed us to easily idenࢢfy that! Removing the bloom filter is as
simple as changing one type.

• Even with mutable state, the main performance gain was on inserࢢons
only.
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Conclusions and Future Work

• The flexibility provided by hamm is invaluable for our research on
blockchain consensus.

• We are on our way to open-sourcing hamm.

• There are sࢢll a bunch of add-ons we’d like to look into such as (true)
hash tables.

• There are many opࢢmizaࢢon opportuniࢢes in the library.
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