

Design and Implementaࢢon of HAMM
Haskell Authenࢢcated Modular Maps

Victor Miraldo, Harold Carr, Alex Kogan, Mark Moir, Maurice Herlihy
Oracle Labs
September 21, 2018

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 2

Moࢢvaࢢon

From a blockchain parࢢcipant’s perspecࢢve:

• To start verifying, it needs a state.

• Tradiࢢonally, download and verify all transacࢢons since forever. This data
grows large.

• Instead, transfer just the necessary part of the state first.

• Fetch the other parts of the state as need arises.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 3

Moࢢvaࢢon

From a blockchain parࢢcipant’s perspecࢢve:

• To start verifying, it needs a state.

• Tradiࢢonally, download and verify all transacࢢons since forever. This data
grows large.

• Instead, transfer just the necessary part of the state first.

• Fetch the other parts of the state as need arises.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 3

Moࢢvaࢢon

From a blockchain parࢢcipant’s perspecࢢve:

• To start verifying, it needs a state.

• Tradiࢢonally, download and verify all transacࢢons since forever. This data
grows large.

• Instead, transfer just the necessary part of the state first.

• Fetch the other parts of the state as need arises.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 3

Moࢢvaࢢon

From a blockchain parࢢcipant’s perspecࢢve:

• To start verifying, it needs a state.

• Tradiࢢonally, download and verify all transacࢢons since forever. This data
grows large.

• Instead, transfer just the necessary part of the state first.

• Fetch the other parts of the state as need arises.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 3

Moࢢvaࢢon

From a blockchain parࢢcipant’s perspecࢢve:

• To start verifying, it needs a state.

• Tradiࢢonally, download and verify all transacࢢons since forever. This data
grows large.

• Instead, transfer just the necessary part of the state first.

• Fetch the other parts of the state as need arises.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 3

The Problem

1 To be able to start parࢢcipaࢢon in a blockchain-like system with parࢢal
state.

2 To verify this summary against some obtained hash.

3 To fetch and verify missing pieces over ,meࢢ amorࢢzing the cost of
starࢢng to verify.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 4

The Problem

1 To be able to start parࢢcipaࢢon in a blockchain-like system with parࢢal
state.

2 To verify this summary against some obtained hash.

3 To fetch and verify missing pieces over ,meࢢ amorࢢzing the cost of
starࢢng to verify.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 4

The Problem

1 To be able to start parࢢcipaࢢon in a blockchain-like system with parࢢal
state.

2 To verify this summary against some obtained hash.

3 To fetch and verify missing pieces over ,meࢢ amorࢢzing the cost of
starࢢng to verify.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 4

Verifier Comming Online

Newbie Verifier

Asks for 'summary'

Sends 'summary'

Verifies 'summary'

Asks for 'page'

Sends 'page'

Verifies 'page'

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 5

Merkle Trees
[Merkle,1979]

Verificaࢢon of the state is not novel. One could useMerkle Trees to construct
proofs of membership or compare roots.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 6

Merkle Trees
[Merkle,1979]

Hash
1
Hash 1-0

+
Hash 1-1

hash()

Hash
0
Hash 0-0

+
Hash 0-1

hash()

Hash 0
+

Hash 1
hash()

Top Hash

Hash
0-0

hash(L1)

Hash
0-1

hash(L2)

Hash
1-0

hash(L3)

Hash
1-1

hash(L4)

Merkle Root is the Top Hash.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 6

Merkle Trees
[Merkle,1979]

Hash
1
Hash 1-0

+
Hash 1-1

hash()

Hash
0
Hash 0-0

+
Hash 0-1

hash()

Hash 0
+

Hash 1
hash()

Top Hash

Hash
0-0

hash(L1)

Hash
0-1

hash(L2)

Hash
1-0

hash(L3)

Hash
1-1

hash(L4)

Prove L2 is member: give L2, hash 0-0 and hash 1.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 6

HAMM 101

DSL for combining key-value store components.

Quickly study different map architectures, eg:

Different add-ons alter the behavior of base maps.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 7

HAMM 101

DSL for combining key-value store components.

Quickly study different map architectures, eg:

myMap : BoundedCacheOf b
(BloomOf h m
(PagesOf [3, 4, 4]

(PartialOf RB)))
String Int

myMap = fromList [("A", 0), ("X", 10)]

Different add-ons alter the behavior of base maps.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 7

HAMM 101

DSL for combining key-value store components.

Quickly study different map architectures, eg:

myMap : BoundedCacheOf b
(BloomOf h m
(PagesOf [3, 4, 4]

(PartialOf RB)))
String Int

myMap = fromList [("A", 0), ("X", 10)]

Different add-ons alter the behavior of base maps.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 7

HAMM 101

DSL for combining key-value store components.

Quickly study different map architectures, eg:

myMap : BoundedCacheOf b
(BloomOf h m
(PagesOf [3, 4, 4]

(PartialOf RB)))
String Int

myMap = fromList [("A", 0), ("X", 10)]

Different add-ons alter the behavior of base maps.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 7

Interlude: This presentaࢢon

• hamm is under acࢢve development.

• Some of the content is novel from paper.

• Some code is slightly different.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 8

Interlude: This presentaࢢon

• hamm is under acࢢve development.

• Some of the content is novel from paper.

• Some code is slightly different.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 8

Interlude: This presentaࢢon

• hamm is under acࢢve development.

• Some of the content is novel from paper.

• Some code is slightly different.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 8

Cooking HAMM from Data.Map

Take Data.Map.lookup as an example:

lookup :: (Ord k)
⇒ k → Map k v → Maybe v

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 9

Cooking HAMM from Data.Map

Abstract awayMap for a type variable c :: ∗ → ∗ → ∗

lookup :: (Ord k)
⇒ k → c k v → Maybe v

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 9

Cooking HAMM from Data.Map

Abstract away Ord by a type family

lookup :: (IsMapCnstr c k v)
⇒ k → c k v → Maybe v

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 9

Cooking HAMM from Data.Map

Allow for arbitrary errors

lookup :: (IsMapCnstr c k v)
⇒ k → c k v → Except (Err c) (Maybe v)

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 9

Cooking HAMM from Data.Map

Parametrize everything with a Monad

lookup :: (IsMapCnstr m c k v,Monad m)
⇒ k → c k v → ExceptT (Err c) m (Maybe v)

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 9

Cooking HAMM from Data.Map

Wrap it in a typeclass

class IsMap (c :: ∗ → ∗ → ∗) where
type Err c :: ∗
type IsMapCnstr m c k v :: Constraint
lookup :: (Monad m, IsMapCnstr m c k v)

⇒ k → c k v → ExceptT (Err c) m (Maybe v)
...

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 9

Add-ons

• Have kind (∗ → ∗ → ∗) → ∗ → ∗ → ∗

• add-ons≈monad transformer

• Alter the implementaࢢon under same API

instance (IsMap c) ⇒ IsMap (BloomOf h m c) where
lookup k (BloomOf blf c)

| bloomMember k blf = lookup k c
| otherwise = return Nothing

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 10

Add-ons

• Have kind (∗ → ∗ → ∗) → ∗ → ∗ → ∗

• add-ons≈monad transformer

• Alter the implementaࢢon under same API

instance (IsMap c) ⇒ IsMap (BloomOf h m c) where
lookup k (BloomOf blf c)

| bloomMember k blf = lookup k c
| otherwise = return Nothing

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 10

Add-ons

• Have kind (∗ → ∗ → ∗) → ∗ → ∗ → ∗

• add-ons≈monad transformer

• Alter the implementaࢢon under same API

instance (IsMap c) ⇒ IsMap (BloomOf h m c) where
lookup k (BloomOf blf c)

| bloomMember k blf = lookup k c
| otherwise = return Nothing

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 10

Add-ons

• Have kind (∗ → ∗ → ∗) → ∗ → ∗ → ∗

• add-ons≈monad transformer

• Alter the implementaࢢon under same API

instance (IsMap c) ⇒ IsMap (BloomOf h m c) where
lookup k (BloomOf blf c)

| bloomMember k blf = lookup k c
| otherwise = return Nothing

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 10

Meet the Add-ons

BloomOf h m Adds a bloom-filter with h hash funcࢢons andmmachine
words.

PartialOf Allows for the argument map to be absent.

PagesOf l Replicates the argument map on a tree structure following l.

CacheOf c p Adds a cache c with evicࢢon policy p.

BoundedCacheOf b c p Forces the size of the cache to never exceed b.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 11

Meet the Add-ons

BloomOf h m Adds a bloom-filter with h hash funcࢢons andmmachine
words.

PartialOf Allows for the argument map to be absent.

PagesOf l Replicates the argument map on a tree structure following l.

CacheOf c p Adds a cache c with evicࢢon policy p.

BoundedCacheOf b c p Forces the size of the cache to never exceed b.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 11

Meet the Add-ons

BloomOf h m Adds a bloom-filter with h hash funcࢢons andmmachine
words.

PartialOf Allows for the argument map to be absent.

PagesOf l Replicates the argument map on a tree structure following l.

CacheOf c p Adds a cache c with evicࢢon policy p.

BoundedCacheOf b c p Forces the size of the cache to never exceed b.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 11

Meet the Add-ons

BloomOf h m Adds a bloom-filter with h hash funcࢢons andmmachine
words.

PartialOf Allows for the argument map to be absent.

PagesOf l Replicates the argument map on a tree structure following l.

CacheOf c p Adds a cache c with evicࢢon policy p.

BoundedCacheOf b c p Forces the size of the cache to never exceed b.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 11

Meet the Add-ons

BloomOf h m Adds a bloom-filter with h hash funcࢢons andmmachine
words.

PartialOf Allows for the argument map to be absent.

PagesOf l Replicates the argument map on a tree structure following l.

CacheOf c p Adds a cache c with evicࢢon policy p.

BoundedCacheOf b c p Forces the size of the cache to never exceed b.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 11

Properࢢes

• Type-classes provide access to properࢢes satsified by certain
combinaࢢons of add-ons.

• Similar to how mtl implementsMonadReader,MonadError, etc.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 12

Properࢢes

• Type-classes provide access to properࢢes satsified by certain
combinaࢢons of add-ons.

• Similar to how mtl implementsMonadReader,MonadError, etc.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 12

Properࢢes: Parࢢࢢoned

Combinaࢢon of add-ons containing PagesOf: supports noࢢon of “page” or
“parࢢࢢon”.

class (IsMap c) ⇒ Partitioned c where
type Partition c :: ∗ → ∗ → ∗
getPartition :: (IsMapCnstr m c k v)

⇒ Int
→ c k v
→ ErrM m c (Maybe (Partition c))

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 13

Properࢢes: Parࢢࢢoned

Combinaࢢon of add-ons containing PagesOf: supports noࢢon of “page” or
“parࢢࢢon”.

class (IsMap c) ⇒ Partitioned c where
type Partition c :: ∗ → ∗ → ∗
getPartition :: (IsMapCnstr m c k v)

⇒ Int
→ c k v
→ ErrM m c (Maybe (Partition c))

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 13

Properࢢes: Cached

Combinaࢢon of add-ons containing CacheOf: supports a lookup that alters
the structure of the map, maintaining the evicࢢon policy.

class (IsMap c) ⇒ Cached c where
lookup :: (IsMapCnstr m c k v)

⇒ k
→ c k v
→ ErrM m c (Maybe (v, c k v))

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 14

Properࢢes: Cached

Combinaࢢon of add-ons containing CacheOf: supports a lookup that alters
the structure of the map, maintaining the evicࢢon policy.

class (IsMap c) ⇒ Cached c where
lookup :: (IsMapCnstr m c k v)

⇒ k
→ c k v
→ ErrM m c (Maybe (v, c k v))

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 14

Examples
PWB_1BC

RB

CacheOf
BloomOf

1 20 n-3 n-2 n-1

RB RB RB
X X X

PagesOf

PartialOf PartialOf PartialOf PartialOf PartialOf PartialOf

A authenࢡcated tree, with possibly absent individual pages, and a cache act-
ing as a summary.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 15

Examples
PWB_Cascache

RB

CacheOf
BloomOf

i+1 i+2i n-3 n-2 n-1

RB RB RB
X X X

PagesOf

PartialOf PartialOf PartialOf PartialOf PartialOf PartialOf

RB

CacheOf
RB

CacheOf}
i+1

A fixed-point-like construcࢢon of just the summary of the previous state. Dif-
ferent evicࢢon policies might show interesࢢng differences.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 15

The Authenࢢcated Interface

• hamm supports proofs-of-membership

class (IsMap c) ⇒ IsAuthMap c where
type Ev c :: ∗
vlookup :: (IsMapCnstr m c k v)

⇒ k → c k v → ExceptT (Err c) m
(Maybe (v, Ev c))

rebuild :: (IsMapCnstr m c k v)
⇒ Proxy c → Ev c → k → v → Digest

Upon seing a successufl vlookup, we can rebuild a digest and check it
matches the merkle root of the map.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 16

The Authenࢢcated Interface

• hamm supports proofs-of-membership

class (IsMap c) ⇒ IsAuthMap c where
type Ev c :: ∗
vlookup :: (IsMapCnstr m c k v)

⇒ k → c k v → ExceptT (Err c) m
(Maybe (v, Ev c))

rebuild :: (IsMapCnstr m c k v)
⇒ Proxy c → Ev c → k → v → Digest

Upon seing a successufl vlookup, we can rebuild a digest and check it
matches the merkle root of the map.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 16

The Authenࢢcated Interface

• hamm supports proofs-of-membership

class (IsMap c) ⇒ IsAuthMap c where
type Ev c :: ∗
vlookup :: (IsMapCnstr m c k v)

⇒ k → c k v → ExceptT (Err c) m
(Maybe (v, Ev c))

rebuild :: (IsMapCnstr m c k v)
⇒ Proxy c → Ev c → k → v → Digest

Upon seing a successufl vlookup, we can rebuild a digest and check it
matches the merkle root of the map.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 16

The Authenࢢcated Interface
Example Instance

data PartialOf c k v = Missing Digest
| Present (c k v)

instance IsAuthMap c ⇒ IsAuthMap (PartialOf c) where
type Ev (PartialOf c) = Ev c
vlookup k (Missing) = throwError ErrOnMissing
vlookup k (Present c) = withExceptT ErrOnPresent

$ vlookup k c
rebuild = rebuild (Proxy :: Proxy c)

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 17

Experiment: Rouࢢne

• Insert 200000 keys in a map.

• Simulate transfering the “summary”.

• Perform n createOrUpdate operaࢢons, serving and counࢢng page misses
as they arise.
• Draw keys according to uniform and geometric distribuࢢons (99.99%)

• We assume 14ms latency and 16Mbps transfer speed.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 18

Experiment: Rouࢢne

• Insert 200000 keys in a map.

• Simulate transfering the “summary”.

• Perform n createOrUpdate operaࢢons, serving and counࢢng page misses
as they arise.
• Draw keys according to uniform and geometric distribuࢢons (99.99%)

• We assume 14ms latency and 16Mbps transfer speed.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 18

Experiment: Rouࢢne

• Insert 200000 keys in a map.

• Simulate transfering the “summary”.

• Perform n createOrUpdate operaࢢons, serving and counࢢng page misses
as they arise.
• Draw keys according to uniform and geometric distribuࢢons (99.99%)

• We assume 14ms latency and 16Mbps transfer speed.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 18

Experiment: Rouࢢne

• Insert 200000 keys in a map.

• Simulate transfering the “summary”.

• Perform n createOrUpdate operaࢢons, serving and counࢢng page misses
as they arise.
• Draw keys according to uniform and geometric distribuࢢons (99.99%)

• We assume 14ms latency and 16Mbps transfer speed.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 18

Experiment: Results

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 19

Discussion
Bloom Filter

• Seemed like a great idea! Prevent unecessary page fetches.

• Turns out its not so great:
• Either too big to be transfered efficiently

• Or fills up quite fast and produces false posiࢢves.

• hamm allowed us to easily idenࢢfy that! Removing the bloom filter is as
simple as changing one type.

• Even with mutable state, the main performance gain was on inserࢢons
only.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 20

Discussion
Bloom Filter

• Seemed like a great idea! Prevent unecessary page fetches.

• Turns out its not so great:
• Either too big to be transfered efficiently

• Or fills up quite fast and produces false posiࢢves.

• hamm allowed us to easily idenࢢfy that! Removing the bloom filter is as
simple as changing one type.

• Even with mutable state, the main performance gain was on inserࢢons
only.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 20

Discussion
Bloom Filter

• Seemed like a great idea! Prevent unecessary page fetches.

• Turns out its not so great:
• Either too big to be transfered efficiently

• Or fills up quite fast and produces false posiࢢves.

• hamm allowed us to easily idenࢢfy that! Removing the bloom filter is as
simple as changing one type.

• Even with mutable state, the main performance gain was on inserࢢons
only.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 20

Discussion
Bloom Filter

• Seemed like a great idea! Prevent unecessary page fetches.

• Turns out its not so great:
• Either too big to be transfered efficiently

• Or fills up quite fast and produces false posiࢢves.

• hamm allowed us to easily idenࢢfy that! Removing the bloom filter is as
simple as changing one type.

• Even with mutable state, the main performance gain was on inserࢢons
only.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 20

Discussion
Bloom Filter

• Seemed like a great idea! Prevent unecessary page fetches.

• Turns out its not so great:
• Either too big to be transfered efficiently

• Or fills up quite fast and produces false posiࢢves.

• hamm allowed us to easily idenࢢfy that! Removing the bloom filter is as
simple as changing one type.

• Even with mutable state, the main performance gain was on inserࢢons
only.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 20

Conclusions and Future Work

• The flexibility provided by hamm is invaluable for our research on
blockchain consensus.

• We are on our way to open-sourcing hamm.

• There are sࢢll a bunch of add-ons we’d like to look into such as (true)
hash tables.

• There are many opࢢmizaࢢon opportuniࢢes in the library.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 21

Conclusions and Future Work

• The flexibility provided by hamm is invaluable for our research on
blockchain consensus.

• We are on our way to open-sourcing hamm.

• There are sࢢll a bunch of add-ons we’d like to look into such as (true)
hash tables.

• There are many opࢢmizaࢢon opportuniࢢes in the library.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 21

Conclusions and Future Work

• The flexibility provided by hamm is invaluable for our research on
blockchain consensus.

• We are on our way to open-sourcing hamm.

• There are sࢢll a bunch of add-ons we’d like to look into such as (true)
hash tables.

• There are many opࢢmizaࢢon opportuniࢢes in the library.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 21

Conclusions and Future Work

• The flexibility provided by hamm is invaluable for our research on
blockchain consensus.

• We are on our way to open-sourcing hamm.

• There are sࢢll a bunch of add-ons we’d like to look into such as (true)
hash tables.

• There are many opࢢmizaࢢon opportuniࢢes in the library.

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 21

Design and Implementaࢢon of HAMM
Haskell Authenࢢcated Modular Maps

Victor Miraldo, Harold Carr, Alex Kogan, Mark Moir, Maurice Herlihy
Oracle Labs
September 21, 2018

Copyright ©2018 Oracle and/or its affiliates. All rights reserved. 22

