
Sums of Products for Mutually Recursive Datatypes
The Appropriationist’s View on Generic Programming

Victor Cacciari Miraldo
Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands
V.CacciariMiraldo@uu.nl

Alejandro Serrano
Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands
A.SerranoMena@uu.nl

Abstract
Generic programming for mutually recursive families of
datatypes is hard. On the other hand, most interesting ab-
stract syntax trees are described by a mutually recursive
family of datatypes. We could give up on using that mutu-
ally recursive structure, but then we lose the ability to use
those generic operations which take advantage of that same
structure. We present a new approach to generic program-
ming that uses modern Haskell features to handle mutually
recursive families with explicit sum-of-products structure.
This additional structure allows us to remove much of the
complexity previously associated with generic programming
over these types.

CCS Concepts • Software and its engineering→ Func-
tional languages; Data types and structures;

Keywords Generic Programming, Datatype, Haskell
ACM Reference Format:
Victor Cacciari Miraldo and Alejandro Serrano. 2018. Sums of Prod-
ucts forMutually Recursive Datatypes: The Appropriationist’s View
on Generic Programming. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on Type-Driven Development (TyDe ’18), Sep-
tember 27, 2018, St. Louis, MO, USA. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3240719.3241786

1 Introduction
(Datatype-)generic programming provides a mechanism to
write functions by induction on the structure of algebraic
datatypes [7]. A well-known example is the deriving mech-
anism in Haskell, which frees the programmer from writing
repetitive functions such as equality [14]. A vast range of
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’18, September 27, 2018, St. Louis, MO, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5825-5/18/09. . . $15.00
https://doi.org/10.1145/3240719.3241786

approaches are available as preprocessors, language exten-
sions, or libraries for Haskell [13, 19]. In Figure 1 we outline
the main design differences between a few of those libraries.

The core idea underlying generic programming is the fact
that a great number of datatypes can be described in a uni-
form fashion. Consider the following datatype representing
binary trees with data stored in their leaves:

data Bin a = Leaf a | Bin (Bin a) (Bin a)

A value of type Bin a consists of a choice between two con-
structors. For the first choice, it also contains a value of
type a whereas for the second it contains two subtrees as
children. This means that the Bin a type is isomorphic to
Either a (Bin a,Bin a).
Different libraries differ on how they define their under-

lying generic descriptions. For example, GHC.Generics [12]
defines the representation of Bin as the following datatype:

Rep (Bin a) = K1 R a :+ : (K1 R (Bin a) :∗ : K1 R (Bin a))

which is a direct translation of Either a (Bin a,Bin a), but
using the combinators provided by GHC.Generics, namely
:+ : and :∗ :. In addition, we need two conversion functions
from :: a → Rep a and to :: Rep a → a which form an
isomorphism between Bin a and Rep (Bin a). All this infor-
mation is tied to the original datatype using a type class:

class Generic a where
type Rep a :: ∗
from :: a → Rep a
to :: Rep a → a

Most generic programming libraries follow a similar pattern
of defining the description of a datatype in the provided
uniform language by some type level information, and two
functions witnessing an isomorphism. A important feature of
such library is how this description is encoded and which are
the primitive operations for constructing such encodings,
as we shall explore in Section 1.2. Some libraries, mainly
deriving from the SYB approach [10, 16], use the Data and
Typeable type classes instead of static type level informa-
tion to provide generic functionality. These are a completely
different strand of work from ours.
Figure 1 shows the main libraries relying on type level

representations. In the pattern functor approach we have
GHC.Generics [12], being the most commonly used one,
that effectively replaced regular [17]. The former does not

https://doi.org/10.1145/3240719.3241786
https://doi.org/10.1145/3240719.3241786

TyDe ’18, September 27, 2018, St. Louis, MO, USA Victor Cacciari Miraldo and Alejandro Serrano

Pattern Functors Codes

No Explicit Recursion GHC.Generics generics-sop

Simple Recursion regular
generics-mrsop

Mutual Recursion multirec

Figure 1. Spectrum of static generic programming libraries

account for recursion explicitly, allowing only for a shallow
representation, whereas the later allows for both deep and
shallow representations by maintaining information about
the recursive occurrences of a type. Maintaining this informa-
tion is central to some generic functions, such as the generic
map and Zipper , for instance. Oftentimes though, one actu-
ally needs more than just one recursive type, justifying the
need to multirec [27].
These libraries are too permissive though, for instance,

K1 R Int :∗ : Maybe is a perfectly valid GHC.Generics pat-
tern functor but will break generic functions, i.e., Maybe is
not a combinator. The way to fix this is to ensure that the pat-
tern functors abide by a certain format, by defining them by
induction on some code that can be inspected andmatched on.
This is the approach of generics-sop [4]. The more restric-
tive code approach allows one to write concise, combinator-
based, generic programs. The novelty in our work is in the
intersection of both the expressivity of multirec, allow-
ing the encoding of mutually recursive families, with the
convenience of the more modern generics-sop style. In
fact, it is worth noting that neither of the aforementioned
libraries compete with out work. We extend both in orthog-
onal directions, resulting in a new design altogether, that
takes advantage of some modern Haskell extensions that the
authors of the previous work could not enjoy.

1.1 Contributions
In this paper we make the following contributions:

• We extend the sum-of-products approach of de Vries
and Löh [4] to care for recursion (Section 3), allowing
for shallow and deep representations. We proceed gen-
eralizing even further to mutually recursive families
of datatypes (Section 4).

• We illustrate the use of our library on familiar exam-
ples such as equality, α-equivalence (Section 5.2) and
the zipper (Section 5), illustrating how it subsumes the
features of the previous approaches.

• We provide Template Haskell functionality to derive
all the boilerplate code needed to use our library (in
Appendix B, due to space restrictions). The novelty
lies in our handling of instantiated type constructors.

We have packaged our results as a Haskell library. This li-
brary, generics-mrsop, fills the hole in Figure 1 for a code-
based approach with support for mutual recursion.

1.2 Design Space
The availability of several libraries for generic programming
witnesses the fact that there are trade-offs between expres-
sivity, ease of use, and underlying techniques in the design
of such a library. In this section we describe some of these
trade-offs, especially those to consider when using the static
approach.

Explicit Recursion. There are two ways to define the rep-
resentation of values. Those that have information about
which fields of the constructors of the datatype in question
are recursive versus those that do not.

If we do not mark recursion explicitly, shallow encodings
are our sole option, where only one layer of the value is
turned into a generic form by a call to from. This is the
kind of representation we get from GHC.Generics, among
others. The other side of the spectrum would be the deep
representation, in which the entire value is turned into the
representation that the generic library provides in one go.

Marking the recursion explicitly, like in regular [17], al-
lows one to choose between shallow and deep encodings
at will. These representations are usually more involved as
they need an extra mechanism to represent recursion. In the
Bin example, the description of the Bin constructor changes
from “this constructor has two fields of the Bin a type” to
“this constructor has two fields in which you recurse”. There-
fore, a deep encoding requires some explicit least fixpoint
combinator – usually called Fix in Haskell.

Depending on the use case, a shallow representationmight
be more efficient if only part of the value needs to be in-
spected. On the other hand, deep representations are some-
times easier to use, since the conversion is performed in one
go, and afterwards one only has to work with the constructs
from the generic library.
The fact that we mark explicitly when recursion takes

place in a datatype gives some additional insight into the de-
scription. Some functions really need the information about
which fields of a constructor are recursive and which are not,
like the genericmap and the generic Zipper –we describe the
latter in Section 5. This additional power has also been used
to define regular expressions over Haskell datatypes [20].

Sumof Products Most generic programming libraries build
their type level descriptions out of three basic combinators:
(1) constants, which indicate a type is atomic and should
not be expanded further; (2) products (usually written as :∗ :)
which are used to build tuples; and (3) sums (usually writ-
ten as :+ :) which encode the choice between constructors.
Rep (Bin a) above is expressed in this form. Note, however,
that there is no restriction on how these can be combined.

In practice, one can always use a sum of products to repre-
sent a datatype – a sum to express the choice of constructor,
and within each constructor a product to declare which fields
you have. The generic-sop library [4] explicitly uses a list
of lists of types, the outer one representing the sum and each

Sums of Products for Mutually Recursive Datatypes TyDe ’18, September 27, 2018, St. Louis, MO, USA

inner one thought of as products. The ′ sign in the code be-
low marks the list as operating at the type level, as opposed
to term-level lists which exist at run-time. This is an example
of Haskell’s datatype promotion [28].

Codesop (Bin a) = ′[′[a], ′[Bin a,Bin a]]

The shape of this description follows more closely the shape
of Haskell datatypes, andmake it easier to implement generic
functionality.
Note how the codes are different than the representation.

The latter being defined by induction on the former. This is
quite a subtle point and it is common to see both terms being
used interchangeably. Here, the representation is mapping
the codes, of kind ′[′[∗]], into ∗. The code can be seen as the
format that the representation must adhere to. Previously,
in the pattern functor approach, the representation was not
guaranteed to have a certain structure. The expressivity of
the language of codes is proportional to the expressivity of
the combinators the library can provide.

Mutually recursive datatypes. We have described several
axes taken by different approaches to generic programming
in Haskell. Unfortunately, most of the approaches restrict
themselves to regular types, in which recursion always goes
into the same datatype, which is the one being defined. Some-
times one would like to have the mutually recursive structure
handy, though. The syntax of many programming languages,
for instance, is expressed naturally using a mutually recur-
sive family. Consider Haskell itself, one of the possibilities
of an expression is to be a do block, while a do block it-
self is composed by a list of statements which may include
expressions.

data Expr = ... | Do [Stmt] | ...
data Stmt = Assign Var Expr | Let Var Expr

Another example is found in HTML and XML documents.
They are better described by a Rose tree, which can be de-
scribed by this family of datatypes:

data Rose a = Fork a [Rose a]
data [] a = [] | a:[a]

The mutual recursion becomes apparent once one instanti-
aties a to some ground type, for instance:

data RoseI = Fork Int ListI
data ListI = Nil | RoseI :ListI

The multirec library [27] is a generalization of regular
which handles mutually recursive families using this very
technique. The mutual recursion is central to some applica-
tions such as generic diffing [15] of abstract syntax trees.

The motivation of our work stems from the desire of hav-
ing the concise structure that codes give to the representations,
together with the information for recursive positions in a
mutually recursive setting.

Deriving the representation. Generic programming allevi-
ates the problem of repetitively writing operations such as
equality or pretty-printing, which depend on the structure
of the datatype. But in order to do so, they still require the
programmer to figure out the right description and write
conversion functions from and to that type. This is tedious,
and also follows the shape of the type!

For that reason, most generic programming libraries also
include some automatic way of generating this boilerplate
code. GHC.Generics is embedded in the compiler; most oth-
ers use Template Haskell [22], themeta-programming facility
found in GHC. In the former case, programmers write:

data Bin a = ...deriving Generic

to open the doors to generic functionality.
There is an interesting problem that arises when we have

mutually recursive datatypes and want to automatically gen-
erate descriptions. The definition of Rose a above uses the
list type, but not simply [a] for any element type a, but the
specific instance [Rose a]. This means that the procedure
to derive the code must take this fact into account. Shallow
descriptions do not suffer too much from this problem. For
deep approaches, though, how to solve this problem is key
to derive a useful description of the datatype.

2 Background
Before diving head first into our generic programming frame-
work, let us take a tour of the existing generic programming
libraries. For that, will be looking at a generic size function
from a few different angles, illustrating how different tech-
niques relate and the nuances between them. This will let us
gradually build up to our framework, that borrows pieces of
each of the different approaches, and combines themwithout
compromise.

2.1 GHC Generics
Since version 7.2, GHC supports some off the shelf generic
programming using GHC.Generics [12], which exposes the
pattern functor of a datatype. This allows one to define a
function for a datatype by induction on the structure of its
(shallow) representation using pattern functors.

These pattern functors are parametrized versions of tu-
ples, sum types (Either in Haskell lingo), and unit, empty
and constant functors. These provide a unified view over
data: the generic representation of values. The values of a
suitable type a are translated to this representation by means
of the function fromgen :: a → Repgen a. Note that the sub-
scripts are there solely to disambiguate names that appear in
many libraries. Hence, fromgen is, in fact, the from in module
GHC.Generics.

Defining a generic function is done in two steps. First, we
define a class that exposes the function for arbitrary types,
in our case, size, which we implement for any type via gsize:

TyDe ’18, September 27, 2018, St. Louis, MO, USA Victor Cacciari Miraldo and Alejandro Serrano

size (Bin (Leaf 1) (Leaf 2))
= gsize (fromgen (Bin (Leaf 1) (Leaf 2)))
= gsize (R1 (K1 (Leaf 1) :∗ : K1 (Leaf 2)))
= gsize (K1 (Leaf 1)) + gsize (K1 (Leaf 2))
†
= size (Leaf 1) + size (Leaf 2)
= gsize (fromgen (Leaf 1)) + gsize (fromgen (Leaf 2))
= gsize (L1 (K1 1)) + gsize (L1 (K1 2))
= size (1 :: Int) + size (2 :: Int)

Figure 2. Reduction of size (Bin (Leaf 1) (Leaf 2))

class Size (a :: ∗) where
size :: a → Int

instance (Size a) ⇒ Size (Bin a) where
size = gsize ◦ fromgen

Next we define the gsize function that operates on the level
of the representation of datatypes. We have to use another
class and the instance mechanism to encode a definition by
induction on representations:

class GSize (rep :: ∗ → ∗) where
gsize :: rep x → Int

instance (GSize f ,GSize g) ⇒ GSize (f :∗ : g) where
gsize (f :∗ : g) = gsize f + gsize g

instance (GSize f ,GSize g) ⇒ GSize (f :+ : g) where
gsize (L1 f) = gsize f
gsize (R1 g) = gsize g

We still have to handle the cases where we might have an
arbitrary type in a position, modeled by the constant functor
K1. We require an instance of Size so we can successfully tie
the recursive knot.

instance (Size x) ⇒ GSize (K1 R x) where
gsize (K1 x) = size x

To finish the description of the generic size, we also need
instances for the unit, void and metadata pattern functors,
called U1, V1, and M1 respectively. Their GSize is rather un-
interesting, so we omit them for the sake of conciseness.
This technique of mutually recursive classes is quite spe-

cific to GHC.Generics flavor of generic programming. Fig-
ure 2 illustrates how the compiler goes about choosing in-
stances for computing size (Bin (Leaf 1) (Leaf 2)). In the
end, we just need an instance for Size Int to compute the
final result. Literals of type Int illustrate what we call opaque
types: those types that constitute the base of the universe
and are opaque to the representation language.

One interesting aspect we should note here is the clearly
shallow encoding that from provides. That is, we only repre-
sent one layer at a time. For example, take the step marked
as (†) in Figure 2: after unwrapping the calculation of the
first layer, we are back to having to calculate size for Bin Int,
not their generic representation.

Upon reflecting on the generic size function above, we see
a number of issues. Most notably is the amount of boilerplate

to achieve a conceptually simple task: sum up all the sizes of
the fields of whichever constructors make up the value. This
is a direct consequence of not having access to the sum-of-
products structure that Haskell’s data declarations follow. A
second issue is that the generic representation does not carry
any information about the recursive structure of the type.
The regular [17] library addresses this issue by having a
specific pattern functor for recursive positions.

Perhaps even more subtle, but also more worrying, is that
we have no guarantees that the Repgen a of a type a will
be defined using only the supported pattern functors. Fixing
this would require one to pin down a single language for
representations, that is, the code of the datatype. Besides cor-
rectness issues, having codes greatly improves the definition
of ad-hoc generic combinators. Every generic function has
to follow the mutually recursive classes technique we shown.

2.2 Explicit Sums of Products
We will now examine the approach used by de Vries and Löh
[4]. The main difference is in the introduction of Codes, that
limit the structure of representations.
Had we had access to a representation of the sum-of-

products structure of Bin, we could have defined our gsize
function following an informal description: sum up the sizes
of the fields inside a value, ignoring the constructor.
Unlike GHC.Generics, the representation of values is de-

fined by induction on the code of a datatype, this code is a
type level list of lists of kind ∗, whose semantics is consonant
to a formula in disjunctive normal form. The outer list is
interpreted as a sum and each of the inner lists as a product.
This section provides an overview of generic-sop as re-
quired to understand our techniques, we refer the reader to
the original paper [4] for a more comprehensive explanation.
Using a sum-of-products approach one could write the

gsize function as easily as:
gsize :: (Genericsop a) ⇒ a → Int
gsize = sum ◦ elim (map size) ◦ fromsop

Ignoring the details of gsize for a moment, let us focus
just on its high level structure. Remembering that from now
returns a sum-of-products view over the data, we are using
an eliminator, elim, to apply a function to the fields of the
constructor used to create a value of type a. This elimina-
tor then applies map size to the fields of the constructor,
returning something akin to a [Int]. We then sum them up
to obtain the final size.
Codes consist of a type level list of lists. The outer list

represents the constructors of a type, and will be interpreted
as a sum, whereas the inner lists are interpreted as the fields
of the respective constructors, interpreted as products.

type family Codesop (a :: ∗) :: ′[′[∗]]

type instance Codesop (Bin a) = ′[′[a], ′[Bin a,Bin a]]

Sums of Products for Mutually Recursive Datatypes TyDe ’18, September 27, 2018, St. Louis, MO, USA

The representation is then defined by induction on Codesop
by the means of generalized n-ary sums, NS, and n-ary prod-
ucts, NP . With a slight abuse of notation, one can view NS
and NP through the lens of the following type isomorphisms:

NS f [k1, k2 , . . .] ≡ f k1 :+ : (f k2 :+ : . . .)
NP f [k1, k2 , . . .] ≡ f k1 :∗ : (f k2 :∗ : . . .)

We could then define Repsop to beNS (NP (K1 R)), echoing
the isomorphisms above, where data K1 R a = K1 a is
borrowed from GHC.Generics. Note that we already need
the parameter f to pass NP to NS here. This is exactly the
representation we get from GHC.Generics.

Repsop (Bin a) ≡ NS (NP (K1 R)) (Codesop (Bin a))

≡ K1 R a :+ : (K1 R (Bin a) :∗ : K1 R (Bin a))

≡ Repgen (Bin a)

It makes no sense to go through all the trouble of adding
the explicit sums-of-products structure to forget this infor-
mation in the representation. Instead of piggybacking on
pattern functors, we define NS and NP from scratch using
GADTs [26]. By pattern matching on the values of NS and
NP we inform the type checker of the structure of Codesop.

data NS :: (k → ∗) → [k] → ∗ where
Here :: f k → NS f (k ′: ks)
There :: NS f ks → NS f (k ′: ks)

data NP :: (k → ∗) → [k] → ∗ where
NP0 :: NP f ′[]

(×) :: f x → NP f xs → NP f (x ′: xs)

Finally, since our atoms are of kind ∗, we can use the
identity functor, I , to interpret those and define the final
representation of values of a type a under the SOP view:

type Repsop a = NS (NP I) (Codesop a)

newtype I (a :: ∗) = I {unI :: a}

To support the claim that one can define general combi-
nators for working with these representations, let us look at
elim and map, used to implement the gsize function in the
beginning of the section. The elim function just drops the
constructor index and applies f , whereas the map applies f
to all elements of a product.

elim :: (∀ k . f k → a) → NS f ks → a
elim f (Here x) = f x
elim f (There x) = elim f x

map :: (∀ k . f k → a) → NP f ks → [a]
map f NP0 = []

map f (x × xs) = f x:map f xs

Reflecting on the current definition of size, especially in
comparison to the GHC.Generics implementation of size,
we see two improvements: (A) we need one fewer type class,
namely GSize, and, (B) the definition is combinator-based.
Considering that the generated pattern functor represen-
tation of a Haskell datatype will already be in a sums-of-
products, we do not lose anything by enforcing this structure.

There are still downsides to this approach. A notable one is
the need to carry constraints around: the actual gsize written
with the generics-sop library and no sugar reads as follows.

gsize :: (Genericsop a,All2 Size (Codesop a)) ⇒ a → Int
gsize = sum ◦ hcollapse

◦ hcmap (Proxy :: Proxy Size) (mapIK size) ◦ fromsop

Where hcollapse and hcmap are analogous to the elim and
map combinatorswe defined above. TheAll2 Size (Codesop a)
constraint tells the compiler that all of the types serving as
atoms for Codesop a are an instance of Size. In our case,
All2 Size (Codesop (Bin a)) expands to (Size a, Size (Bin a)).
The Size constraint also has to be passed around with a Proxy
for the eliminator of the n-ary sum. This is a direct conse-
quence of a shallow encoding: since we only unfold one
layer of recursion at a time, we have to carry proofs that the
recursive arguments can also be translated to a generic repre-
sentation. We can relieve this burden by recording, explicitly,
which fields of a constructor are recursive or not.

3 Explicit Fix: Diving Deep and Shallow
In this section we will start to look at our approach, es-
sentially combining the techniques from the regular and
generics-sop libraries. Later we extend the constructions
to handle mutually recursive families instead of simple re-
cursion. As we discussed in the introduction, a fixpoint view
over generic functionality is required to implement some
functionality like the Zipper generically. In other words, we
need an explicit description of which fields of a constructor
are recursive and which are not.
Introducing information about the recursive positions in

a type requires more expressive codes than in Section 2.2,
where our codes were a list of lists of types, which could be
anything. Instead, we will now have a list of lists of Atom to
be our codes:

data Atom = I | KInt | . . .

type family Codefix (a :: ∗) :: ′[′[Atom]]

type instance Codefix (Bin Int) = ′[′[KInt], ′[I , I]]

Where I is used tomark the recursive positions andKInt, . . .
are codes for a predetermined selection of primitive types,
which we refer to as opaque types. Favoring the simplicity of
the presentation, we will stick with only hard coded Int as
the only opaque type in the universe. Later on, in Section 4.1,
we parametrize the whole development by the choice of
opaque types.

We can no longer represent polymorphic types in this uni-
verse – the codes themselves are not polymorphic. Back in
Section 2.2 we have defined Codesop (Bin a), and this would
work for any a. This might seem like a disadvantage at first,
but it is in fact the opposite. This allows us to provide a
deep conversion for free and drops the need to carry con-
straints around. Beyond doubt one needs to have access to

TyDe ’18, September 27, 2018, St. Louis, MO, USA Victor Cacciari Miraldo and Alejandro Serrano

the Codesop a when converting a Bin a to its deep represen-
tation. By specifying the types involved beforehand, we are
able to get by without having to carry all of the constraints
we needed, for instance, for gsize at the end of Section 2.2.
We can benefit the most from this in the simplicity of combi-
nators we are able to write, as shown in Section 4.2.
Wrapping our tofix and fromfix isomorphism into a type

class and writing the instance that witnesses that Bin Int has
a Codefix is straightforward. We ommit the tofix function as
it is the opposite of fromfix:

class Genericfix a where
fromfix :: a → Repfix a a
tofix :: Repfix a a → a

instance Genericfix (Bin Int) where
fromfix (Leaf x)
= Rep (Here (NAK x × NP0))

fromfix (Bin l r)
= Rep (There (Here (NAI l × NAI r × NP0)))

In order to define Repfix we just need a way to map an
Atom into ∗. Since an atom can be either an opaque type,
known statically, or some other type that will be used as a
recursive position later on, we simply receive it as another
parameter. The NA datatype relates an Atom to its semantics:

data NA :: ∗ → Atom → ∗ where
NAI :: x → NA x I
NAK :: Int → NA x KInt

newtype Repfix a x
= Rep {unRep :: NS (NP (NA x)) (Codefix a)}

It is an interesting exercise to implement the Functor in-
stance for (Repfix a). We were only able to lift it to a functor
by recording the information about the recursive positions.
Otherwise, there would be no way to know where to apply
f when defining fmap f .
Nevertheless, working directly with Repfix is hard – we

need to pattern match onThere and Here, whereas we actu-
ally want to have the notion of constructor for the generic
setting too! The main advantage of the sum-of-products struc-
ture is to allow a user to pattern match on generic represen-
tations just like they would on values of the original type,
contrasting with GHC.Generics. One can precisely state that
a value of a representation is composed by a choice of con-
structor and its respective product of fields by the View type.

data Nat = Z | S Nat

data View :: [[Atom]] → ∗ → ∗ where
Tag :: Constr n t → NP (NA x) (Lkup t n) → View t x

A value of Constr n sum is a proof that n is a valid con-
structor for sum, stating that n < length sum. Lkup performs
list lookup at the type level. In order to improve type error
messages, we generate a TypeError whenever we reach a
given index n that is out of bounds. Interestingly, our design
guarantees that this case is never reached by Constr .

data Constr :: Nat → [k] → ∗ where
CZ :: Constr Z (x:xs)
CS :: Constr n xs → Constr (S n) (x:xs)

type family Lkup (ls :: [k]) (n :: Nat) :: k where
Lkup ′[] = TypeError “Index out o f bounds”
Lkup (x:xs) ′Z = x
Lkup (x:xs) (′S n) = Lkup xs n

Now we are able to easily pattern match and inject into
and from generic values. Unfortunately, matching on Tag re-
quires describing in full detail the shape of the generic value
using the elements of Constr . Using pattern synonyms [18]
we can define those patterns once and for all, and give them
more descriptive names. For example, here are the synonyms
describing the constructors Bin and Leaf . 1

pattern Leaf x = Tag CZ (NAK x × NP0)
pattern Bin l r = Tag (CS CZ) (NAI l × NAI r × NP0)

The functions that perform the pattern matching and in-
jection are the inj and sop below.

inj :: View sop x → Repfix sop x
sop :: Repfix sop x → View sop x

The View type and the hability to split a value into a choice
of constructor and its fields is very handy for writing generic
functions, as we can see in Section 5.2.

Having the core of the sums-of-products universe defined,
we can turn our attention to writing the combinators that
the programmer will use. These will be defined by induction
on the Codefix instead of having to rely on instances, like in
Section 2.1. For instance, lets look at compos, which applies
a function f everywhere on the recursive structure.

compos :: (Genericfix a) ⇒ (a → a) → a → a
compos f = tofix ◦ fmap f ◦ fromfix

Although more interesting in the mutually recursive set-
ting, Section 4, we can illustrate its use for traversing a tree
and adding one to its leaves. This example is a bit convo-
luted, since one could get the same result by simply writing
fmap (+1) :: Bin Int → Bin Int, but shows the intended
usage of the compos combinator just defined.

example :: Bin Int → Bin Int
example (Leaf n) = Leaf (n + 1)
example x = compos example x

It is worth noting the catch-all case, allowing one to focus
only on the interesting patterns and using a default imple-
mentation everywhere else.

Converting to a deep representation. The fromfix function
returns a shallow representation. But by constructing the
least fixpoint of Repfix a we can easily obtain the deep en-
coding for free, by simply recursively translating each layer
of the shallow encoding.
1Throughout this paperwe use the syntaxC to refer to the pattern describing
a view for constructor C.

Sums of Products for Mutually Recursive Datatypes TyDe ’18, September 27, 2018, St. Louis, MO, USA

crush :: (Genericfix a)
⇒ (∀ x . Int → b) → ([b] → b)
→ a → b

crush k cat = crushFix ◦ deepFrom
where

crushFix :: Fix (Repfix a) → b
crushFix = cat ◦ elimNS (elimNP go) ◦ unFix

go (NAI x) = crushFix x
go (NAK i) = k i

Figure 3. Generic crush combinator

newtype Fix f = Fix {unFix :: f (Fix f)}

deepFrom :: (Genericfix a) ⇒ a → Fix (Repfix a)
deepFrom = Fix ◦ fmap deepFrom ◦ fromfix

So far, we handle the same class of types as the regular [17]
library, but we are imposing the representation to follow a
sum-of-products structure by the means of Codefix. Those
types are guaranteed to have an initial algebra, and indeed,
the generic fold is defined as expected:

fold :: (Repfix a b → b) → Fix (Repfix a) → b
fold f = f ◦ fmap (fold f) ◦ unFix

Sometimes we actually want to consume a value and pro-
duce a single value, but do not need the full expressivity of
fold. Instead, if we know how to consume the opaque types
and combine those results, we can consume any Genericfix
type using crush, which is defined in fig. 3. The behavior of
crush is defined by (1) how to turn atoms into the output
type b – in this case we only have integer atoms, and thus we
require an Int → b function – and (2) how to combine the
values bubbling up from each member of a product. Finally,
we come full circle to our running gsize example as it was
promised in the introduction. This is noticeably the smallest
implementation so far, and very straight to the point.

gsize :: (Genericfix a) ⇒ a → Int
gsize = crush (const 1) sum

Let us take a step back and reflect upon what we have
achieved so far. We have combined the insight from the
regular library of keeping track of recursive positions with
the convenience of the generics-sop for enforcing a spe-
cific normal form on representations. By doing so, we were
able to provide a deep encoding for free. This essentially
frees us from the burden of maintaining complicated con-
straints needed for handling the types within the topmost
constructor. The information about the recursive position
allows us to write neat combinators like crush and compos to-
gether with a convenient View type for easy generic pattern
matching. The only thing keeping us from handling real life
applications is the limited form of recursion. When a user
requires a generic programming library, chances are they
need to traverse and consume mutually recursive structures.

4 Mutual Recursion
Conceptually, going from regular types (Section 3) to mu-
tually recursive families is simple. We just need to be able
to reference not only one type variable, but one for each
element in the family. This is usually [2, 11] done by adding
an index to the recursive positions that represents which
member of the family we are recursing over. As a running
example, we use the rose tree family from the introduction.

data Rose a = Fork a [Rose a]
data [] a = [] | a:[a]

The previously introducedCodefix is not expressive enough
to describe this datatype. In particular, when we try to write
Codefix (Rose Int), there is no immediately recursive appear-
ance of Rose itself, so we cannot use the atom I in that po-
sition. Furthermore [Rose a] is not an opaque type either,
so we cannot use any of the other combinators provided by
Atom. We would like to record information about [Rose Int]
referring to itself via another datatype.

Our solution is tomove from codes of datatypes to codes for
families of datatypes.We no longer talk aboutCodefix (Rose Int)
or Codefix [Rose Int] in isolation. Codes only make sense
within a family, that is, a list of types. Hence, we talk about
Codemrec

′[Rose Int, [Rose Int]]. That is, the codes of the
two types in the family. Then we extend the language of
Atoms by appending to I a natural number which specifies
the member of the family to recurse into:

data Atom = I Nat | KInt | . . .

The code of this recursive family of datatypes can finally be
described as:

type FamRose = ′[Rose Int, [Rose Int]]

type Codemrec FamRose = ′[′[′[KInt, I (S Z)]]
, ′[′[], ′[I Z , I (S Z)]]]

Let us have a closer look at the code for Rose Int, which
appears in the first place in the list. There is only one con-
structor which has an Int field, represented by KInt, and
another in which we recurse via the second member of our
family (since lists are 0-indexed, we represent this by S Z).
Similarly, the second constructor of [Rose Int] points back
to both Rose Int using I Z and to [Rose Int] itself via I (S Z).

Having settled on the definition of Atom, we now need to
adapt NA to the new Atoms. In order to interpret any Atom
into ∗, we now need a way to interpret the different recursive
positions. This information is given by an additional type
parameter φ that maps natural numbers into types.

data NA :: (Nat → ∗) → Atom → ∗ where
NAI :: φ n → NA φ (I n)
NAK :: Int → NA φ KInt

This additional φ naturally bubbles up to Repmrec.
type Repmrec (φ :: Nat → ∗) (c :: [[Atom]])

= NS (NP (NA φ)) c

The only piece missing here is tying the recursive knot. If we

TyDe ’18, September 27, 2018, St. Louis, MO, USA Victor Cacciari Miraldo and Alejandro Serrano

want our representation to describe a family of datatypes,
the obvious choice for φ n is to look up the type at index n
in FamRose. In fact, we are simply performing a type level
lookup in the family, so we can reuse the Lkup from Section 3.

In principle, this is enough to provide a ground represen-
tation for the family of types. Let fam be a family of types,
like ′[Rose Int, [Rose Int]], and codes the corresponding list
of codes. Then the representation of the type at index ix in
the list fam is given by:

Repmrec (Lkup fam) (Lkup codes ix)

This definition states that to obtain the representation of the
type at index ix, we first lookup its code. Then, in the recur-
sive positions we interpret each I n by looking up the type
at that index in the original family. This gives us a shallow
representation. As an example, below is the expansion for
index 0 of the rose tree family. Note how it is isomorphic to
the representation that GHC.Generics would have chosen
for Rose Int:

Repmrec (Lkup FamRose) (Lkup (Codemrec FamRose) Z)
= Repmrec (Lkup FamRose) ′[′[KInt, I (S Z)]]
= NS (NP (NA (Lkup FamRose))) ′[′[KInt, I (S Z)]]
≡ K1 R Int :∗ : K1 R (Lkup FamRose (S Z))
= K1 R Int :∗ : K1 R [Rose Int]
= Repgen (Rose Int)

Unfortunately, Haskell only allows saturated, that is, fully-
applied type families. Hence, we cannot partially apply Lkup
like we did it in the example above. As a result, we need to
introduce an intermediate datatype El,

data El :: [∗] → Nat → ∗ where
El :: Lkup fam ix → El fam ix

The representation of the family fam at index ix is thus given
by Repmrec (El fam) (Lkup codes ix). We only need to use El
in the first argument, because that is the position in which
we require partial application. The second position has Lkup
already fully-applied, and can stay as is.
We still have to relate a family of types to their respec-

tive codes. As in other generic programming approaches,
we want to make their relation explicit. The Family type
class below realizes this relation, and introduces functions
to perform the conversion between our representation and
the actual types. Using El here spares us from using a proxy
for fam in frommrec and tomrec:

class Family (fam :: [∗]) (codes :: [[[Atom]]]) where

frommrec :: SNat ix
→ El fam ix → Repmrec (El fam) (Lkup codes ix)

tomrec :: SNat ix
→ Repmrec (El fam) (Lkup codes ix) → El fam ix

One of the differences between other approaches and ours
is that we do not use an associated type to define the codes for
the family fam. One of the reasons to choose this path is that
it alleviates the burden of writing the longer Codemrec fam

every time we want to refer to codes. Furthermore, there are
types like lists which appear in many different families, and
in that case it makes sense to speak about a relation instead
of a function. In any case, we can choose the other point of
the design space by moving codes into an associated type or
introduce a functional dependency fam → codes.
Since now frommrec and tomrec operate on families, we

have to specify how to translate each of the members of
the family back and forth the generic representation. This
translation needs to know which is the index of the datatype
we are converting between in each case, hence the additional
SNat ix parameter. Pattern matching on this singleton [5]
type informs the compiler about the shape of the Nat index.
Its definition is:

data SNat (n :: Nat) where
SZ :: SNat ′Z
SS :: SNat n → SNat (′S n)

For example, in the case of our family of rose trees, frommrec
has the following shape:

frommrec SZ (El (Fork x ch))
= Rep (Here (NAK x × NAI ch × NP0))

frommrec (SS SZ) (El [])
= Rep (Here NP0))

frommrec (SS SZ) (El (x:xs))
= Rep (There (Here (NAI x × NAI xs × NP0)))

By pattern matching on the index, the compiler knows which
family member to expect as a second argument. This then
allows the pattern matching on the El to typecheck.

The limitations of the Haskell type system lead us to intro-
duce El as an intermediate datatype. Our frommrec function
does not take a member of the family directly, but an El-
wrapped one. However, to construct that value, El needs
to know its parameters, which amounts to the family we
are embedding our type into and the index in that family.
Those values are not immediately obvious, but we can use
Haskell’s visible type application [6] to work around it. The
into function injects a value into the corresponding El:

into :: ∀ fam ty ix . (ix ∼ Idx ty fam, Lkup fam ix ∼ ty)
⇒ ty → El fam ix

into = El

where Idx is a closed type family implementing the inverse
of Lkup, that is, obtaining the index of the type ty in the list
fam. Using this function we can turn a [Rose Int] into its
generic representation by writing frommrec ◦ into @FamRose.
The type application @FamRose is responsible for fixing the
mutually recursive family we are workingwith, which allows
the type checker to reduce all the constraints and happily
inject the element into El.

Deep representation. In Section 3 we have described a tech-
nique to derive deep representations from shallow repre-
sentations. We can play a very similar trick here. The main
difference is the definition of the least fixpoint combinator,

Sums of Products for Mutually Recursive Datatypes TyDe ’18, September 27, 2018, St. Louis, MO, USA

which receives an extra parameter of kind Nat indicating
which code to use first:

newtype Fix (codes :: [[[Atom]]]) (ix :: Nat)
= Fix {unFix :: Repmrec (Fix codes) (Lkup codes ix)}

Intuitively, since now we can recurse on different positions,
we need to keep track of the representations for all those
positions in the type. This is the job of the codes argument.
Furthermore, our Fix does not represent a single datatype,
but rather the whole family. Thus, we need each value to
have an additional index to declare on which element of the
family it is working on.
As in the previous section, we can obtain the deep repre-

sentation by iteratively applying the shallow representation.
Earlier we used fmap since the Repfix type was a functor.
Repmrec on the other hand cannot be given a Functor instance,
but we can still define a similar function mapRec,

mapRep :: (∀ ix . φ1 ix → φ2 ix)
→ Repmrec φ1 c → Repmrec φ2 c

This signature tells us that if we want to change the φ1 ar-
gument in the representation, we need to provide a natural
transformation from φ1 to φ2 , that is, a function which works
over each possible index thisφ1 can take and does not change
this index. This follows from φ1 having kind Nat → ∗.

deepFrom :: Family fam codes
⇒ El fam ix → Fix (Repmrec codes ix)

deepFrom = Fix ◦mapRec deepFrom ◦ frommrec

Only well-formed representations are accepted. At first
glance, it may seem like the Atom datatype gives too much
freedom: its I constructor receives a natural number, but
there is no apparent static check that this number refers to
an actual member of the recursive family we are describing.
For example, the list of codes ′[′[′[KInt, I (S (S Z))]]] is
accepted by the compiler although it does not represent any
family of datatypes.
A direct solution to this problem is to introduce yet an-

other index, this time in the Atom datatype, which specifies
which indices are allowed. The I constructor is then refined
to take not any natural number, but only those which lie in
the range – this is usually known as Fin n.

data Atom (n :: Nat) = I (Fin n) | KInt | . . .

The lack of dependent types makes this approach very hard,
in Haskell. We would need to carry around the inhabitants
Fin n and define functionality to manipulate them, which is
more complex than what meets the eye. This could greatly
hinder the usability of the library.
By looking a bit more closely, we find that we are not

losing any type-safety by allowing codes which reference an
arbitrary number of recursive positions. Users of our library
are allowed to write the previous ill-defined code, but when
trying to write values of the representation of that code, the
Lkup function detects the out-of-bounds index, raising a type
error and preventing the program from compiling.

4.1 Parametrized Opaque Types
Up to this point we have considered Atom to include a prede-
termined selection of opaque types, such as Int, each of them
represented by one of the constructors other than I . This is
far from ideal, for two conflicting reasons:

1. The choice of opaque types might be too narrow. For
example, the user of our library may decide to use
ByteString in their datatypes. Since that type is not
covered byAtom, nor by our generic approach, this im-
plies that generics-mrsop becomes useless to them.

2. The choice of opaque types might be too wide. If we try
to encompass any possible situation, we end up with a
huge Atom type. But for a specific use case, we might
be interested only in Ints and Floats, so why bother
ourselves with possibly ill-formed representations and
pattern matches which should never be reached?

Our solution is to parametrize Atom, giving programmers
the choice of opaque types:

data Atom kon = I Nat | K kon

For example, if we only want to deal with numeric opaque
types, we can write:

data NumericK = KInt | KInteger | KFloat
type NumericAtom = Atom NumericK

The representation of codes must be updated to reflect
the possibility of choosing different sets of opaque types.
The NA datatype in this final implementation provides two
constructors, one per constructor in Atom. The NS and NP
datatypes do not require any change.

data NA :: (kon → ∗) → (Nat → ∗) → Atom kon → ∗ where
NAI :: φ n → NA κ φ (I n)
NAK :: κ k → NA κ φ (K k)

type Repmrec (κ :: kon → ∗) (φ :: Nat → ∗) (c :: [[Atom kon]])
= NS (NP (NA κ φ)) c

The NAK constructor in NAmakes use of an additional argu-
ment κ. The problem is that we are defining the code for the
set of opaque types by a specific kind, such asNumeric above.
On the other hand, values which appear in a field must have
a type whose kind is ∗. Thus, we require a mapping from
each of the codes to the actual opaque type they represent,
this is exactly the opaque type interpretation κ. Here is the
datatype interpreting NumericK into ground types:

data NumericI :: NumericK → ∗ where
IInt :: Int → NumericI KInt
IInteger :: Integer → NumericI KInteger
IFloat :: Float → NumericI KFloat

The last piece of our framework which has to be updated
to support different sets of opaque types is the Family type
class, as given in Figure 4. This type class provides an inter-
esting use case for the new dependent features in Haskell;

TyDe ’18, September 27, 2018, St. Louis, MO, USA Victor Cacciari Miraldo and Alejandro Serrano

both κ and codes are parametrized by an implicit argument
kon which represents the set of opaque types.

We stress that the parametrization over opaque types does
not mean that we can use only closed universes of opaque
types. It is possible to provide an open representation by
choosing (∗) – the whole kind of Haskell’s ground types –
as argument to Atom. As a consequence, the interpretation
ought to be of kind ∗ → ∗, as follows:

data Value :: ∗ → ∗ where
Value :: t → Value t

In order to use (∗) as an argument to a type, we are required
to enable the TypeInType language extension [23, 24].

4.2 Combinators
In the remainder of this section we wish to showcase a selec-
tion of particularly powerful combinators that are simple to
define by exploiting the sums-of-products structure coupled
with the mutual recursion information. Defining the same
combinators in multirec would produce much more com-
plicated code. In GHC.Generics these are even impossible
to write due to the absence of recursion information.
For the sake of fostering intuition instead of worrying

about notational overhead, we write values of Repmrec κ φ c
just like we would write normal Haskell values. They have
the same sums-of-products structure anyway. Whenever a
function is defined using the ≏ symbol, C x1 . . . xn will
stand for a value of the corresponding Repmrec κ φ c, that
is, There (. . . (Here (x1 × . . . × xn × NP0))). Since each of
these x1 . . . xn might be a recursive type or an opaque type,
whenever we have two functions fI and fK in scope, f xj will
denote the application of the correct function for recursive
positions, fI , or opaque types fK . For example, here is the
actual code of the function which maps over a NA structure:

bimapNA fK fI (NAI i) = NAI (fI i)
bimapNA fK fI (NAK k) = NAK (fK k)

which following this convention becomes:
bimapNA fK fI x ≏ f x

The first obvious combinator which we can write using
the sum-of-products structure is map. Our Repmrec κ φ c
is no longer a regular functor, but a higher bifunctor. In
other words, it requires two functions, one for mapping over
opaque types and another for mapping over I positions.

bimapRep :: (∀ k . κ1 k → κ2 k) → (∀ ix . φ1 ix → φ2 ix)
→ Repmrec κ1 φ1 c → Repmrec κ2 φ2 c

bimapRep fK fI (C x1 . . . xn) ≏ C (f x1) . . . (f xn)

More interesting than a map perhaps is a general elimina-
tor. In order to destruct a Repmrec κ φ c we need a way for
eliminating every recursive position or opaque type inside
the representation and a way of combining these results.

elimRep :: (∀ k . κ k → a) → (∀ ix . φ ix → a) → ([a] → b)
→ Repmrec κ φ c → b

elimRep fK fI cat (C x1 . . . xn) ≏ cat [f x1, . . . , f xn]

Being able to eliminate a representation is useful, but it
becomes even more useful when we are able to combine
the data in different values of the same representation with
a zip like combinator. Our zipRep will attempt to put two
values of a representation “side-by-side”, as long as they are
constructed with the same injection into the n-ary sum, NS.

zipRep :: Repmrec κ1 φ1 c → Repmrec κ2 φ2 c
→ Maybe (Repmrec (κ1 :∗ : κ2) (φ1 :∗ : φ2) c)

zipRep (C x1 . . . xn) (D y1 . . . ym)
| C ≡ D ≏ Just (C (x1 :∗ : y1) . . . (xn :∗ : yn))

-- if C == D, then also n == m!
| otherwise ≏ Nothing

This definition zipRep can be translated to work with an
arbitrary (Alternative f) instead ofMaybe. The compos com-
binator, already introduced in Section 3, shows up in a yet
more expressive form. We are now able to change every sub-
tree of whatever type we choose inside an arbitrary value of
the mutually recursive family in question.

compos :: (∀ iy . El fam iy → El fam iy)
→ El fam ix → El fam ix

compos f = tomrec ◦ bimapRep id f ◦ frommrec

Defining these combinators in multirec is not impossible,
but involves a much bigger effort. Everything has to be im-
plemented by the means of type classes and each supported
combinator must have one instance.
It is worth noting that although we presented pure ver-

sions of these combinators, generics-mrsop definesmonadic
variants of these and suffixes them with a M, following the
standard Haskell naming convention. We will need these
monadic combinators in Section 5.2.

5 Examples
In this section we present two applications of our generic
programming approach, namely equality and α-equivalence.
Our goal is to show that our approach is at least as powerful
as any other comparable library, but brings in the union of
their advantages. Even though some examples use a single
recursive datatype for the sake of conciseness, those can
be readily generalized to mutually recursive families. An-
other common benchmark for the power of a generic library,
zippers, is described in Appendix A due to lack of space.
There are many other applications for generic program-

ming which greatly benefit from supporting mutual recur-
sion, if not requiring it. One great source of examples consists
of operations on abstract syntax trees of realistic languages,
such as generic diffing [15] or pretty-printing [12].

5.1 Equality
As usually done in generic programming papers, we should
define generic equality in our own framework. In fact, with

Sums of Products for Mutually Recursive Datatypes TyDe ’18, September 27, 2018, St. Louis, MO, USA

class Family (κ :: kon → ∗) (fam :: [∗]) (codes :: [[[Atom kon]]]) where

frommrec :: SNat ix → El fam ix → Repmrec κ (El fam) (Lkup codes ix)
tomrec :: SNat ix → Repmrec κ (El fam) (Lkup codes ix) → El fam ix

Figure 4. Family type class with support for different opaque types

geq :: (Family κ fam codes)
⇒ (∀ k . κ k → κ k → Bool)
→ El fam ix → El fam ix → Bool

geq eqK x y = go (deepFrom x) (deepFrom y)
where go (Fix x) (Fix y)
= maybe False (elimRep (uncurry eqK) (uncurry go) and)
$ zipRep x y

Figure 5. Generic equality

generics-mrsop we can define a particularly elegant ver-
sion of generic equality, given in Figure 5.
Reading through the code we see that we convert both

arguments of geq to their deep representation, then compare
their top level constructor with zipRep. If they agree we go
through each of their fields calling either the equality on
opaque types eqK or recursing.

5.2 α-Equivalence
A more involved exercise is the definition of α-equivalence
for a language. In this section we start by showing a straight-
forward version for the λ-calculus and then move on to a
more elaborate language. Although such problem has already
been treated using generic programming [25], it provides a
good example to illustrate our library.

Regardless of the language, determining whether two pro-
grams are α-equivalent requires one to focus on the construc-
tors that introduce scoping, declare variables or reference
variables. All the other constructors of the language should
just combine the recursive results. Let us warm up with
untyped λ-calculus:

data Termλ = Var String | Abs String Termλ | App Termλ Termλ

Let us explain the process step by step. First, for t1, t2 ::
Termλ to be α-equivalent, they have to have the construc-
tors on the same positions. Otherwise, they cannot be α-
equivalent. Then we check the bound variables: we traverse
both terms at the same time and every time we go through
a binder, in this case Abs, we register a new rule saying that
the bound variable names are equivalent for the terms under
that scope. Whenever we find a reference to a variable, Var ,
we check if the referenced variable is equivalent under the
registered rules so far.
Let us abstract away this book-keeping functionality by

the means of a monad with a couple of associated functions.
The idea is that monadm will keep track of a stack of scopes,
and each scope will register a list of name-equivalences. In-
deed, this is very close to how one should go about defining
equality for nominal terms [3].

class Monad m ⇒ MonadAlphaEq m where
scoped :: m a → m a
addRule :: String → String → m ()

(≈) :: String → String → m Bool

Running a scoped f computation will push a new scope
for running f and pop it after f is done. The addRule v1 v2
function registers an equivalence of v1 and v2 in the top
of the scope stack. Finally, v1 ≈ v2 is defined by pattern
matching on the scope stack. If the stack is empty, then
(≈) v1 v2 = (v1 ≡ v2). Otherwise, let the stack be s:ss. We first
traverse s gathering the rules referencing either v1 or v2 . If
there are none, we check if v1 ≈ v2 under ss. If there are rules
referencing either variable name in the topmost stack, we
must ensure there is only one such rule, and it states a name
equivalence between v1 and v2 . The implementation of these
functions for MonadAlphaEq (State [[(String, String)]]) is
available as part of our library.
Returning to our main focus and leaving book-keeping

functionality aside, we define in Figure 6 our alpha equiva-
lence decision procedure by encoding what to do for Var and
Abs constructors. The App can be eliminated generically.

There is a number of remarks to be made for this example.
First, note the application of zipRep. If two Termλs are made
with different constructors, galphaEq will already return
False because zipRep will fail. When zipRep succeeds though,
we get access to one constructor with paired fields inside. The
go is then responsible for performing the necessary semantic
actions for the Var and Abs constructors and applying a

alphaEq :: Termλ → Termλ → Bool
alphaEq x y = flip runState [[]]

(galphaEq (deepFrom x) (deepFrom y))
where

galphaEq x y = maybe False (go Term) (zipRep x y)

step = elimRepM (return ◦ uncurry (≡))

-- opaque types have to be equal!
(uncurry galphaEq) -- recursive step
(return ◦ and) -- combine

go Termλ x = case sop x of
Var (v1 :∗ : v2) → v1 ≈ v2
Abs (v1 :∗ : v2) (t1 :∗ : t2)

→ scoped (addRule v1 v2 >> galphaEq t1 t2)
→ step x

Figure 6. α-equivalence for a λ-calculus

TyDe ’18, September 27, 2018, St. Louis, MO, USA Victor Cacciari Miraldo and Alejandro Serrano

data Stmt = SAssign String Exp
| SIf Exp Stmt Stmt
| SSeq Stmt Stmt
| SReturn Exp
| SDecl Decl
| SSkip

data Decl = DVar String
| DFun String String Stmt

data Exp = EVar String
| ECall String Exp
| EAdd Exp Exp
| ESub Exp Exp
| ELit Int

go Stmt x = case sop x of
SAssign (v1 :∗ : v2) (e1 :∗ : e2) → addRule v1 v2 >> galphaEq e1 e2

→ step x
go Decl x = case sop x of

DVar (v1 :∗ : v2) → addRule v1 v2 >> return True
DFun (f1 :∗ : f2) (x1 :∗ : x2) (s1 :∗ : s2) → addRule f1 f2

>> scoped (addRule x1 x2 >> galphaEq s1 s2)
→ step x

go Exp x = case sop x of
EVar (v1 :∗ : v2) → v1 ≈ v2
ECall (f1 :∗ : f2) (e1 :∗ : e2) → (∧) <$> f1 ≈ f2 <∗> galphaEq e1 e2

→ step x
go x = step x

Figure 7. α-equivalence for a toy imperative language

general eliminator for anything else. In the actual library,
the pattern synonyms Termλ , Var , and Abs are automatically
generated as we will see in Appendix B.
One might be inclined to believe that the generic pro-

gramming here is more cumbersome than a straightforward
pattern matching definition over Termλ . If we consider a
more intricate language, however, manual pattern matching
becomes almost intractable very fast.
Take the toy imperative language defined in Figure 7. α-

equivalence for this language can be defined with just a
couple of changes to the definition for Termλ . For one thing,
alphaEq, step and galphaEq remain the same. We just need to
adapt the go function. Here writing α-equivalence by pattern
matching is not straightforward anymore. Moreover, if we
decide to change this language and add more statements or
more expressions, the changes to the go function areminimal,
none if we do not introduce any additional construct which
declares or uses variables. As long as we do not touch the
constructors that go patterns matches on, we can even use
the very same function.

In this section we have shown several recurring examples
from the generic programming community. generics-mrsop
gives both expressive power and convenience. The last point
we have to address is that we still have to write the Family in-
stance for the types we want to use. For instance, the Family
instance for example in Figure 7 is not going to be fun. Deriv-
ing these automatically is possible, but non-trivial; we give
a full account in Appendix B

6 Conclusion and Future Work
Generic programming is an ever changing field. The more
the Haskell language evolves, the more interesting generic
programming libraries we can create. Indeed, some of the
language extensions we require in our work were not avail-
able at the time that some of the libraries in the related work
were developed.

Future work involves expanding the universe of datatypes
that our library can handle. Currently, every type involved
in a recursive family must be a ground type (of kind ∗ in
Haskell terms); our Template Haskell derivations acknowl-
edges this fact by implementing some amount of reduction
for types. This limits the functions we can implement gener-
ically, for example we cannot write a generic fmap function,
since it operates on types of kind ∗ → ∗. GHC.Generics
supports type constructors with exactly one argument via
the Generic1 type class. We intend to combine the approach
in this paper with that of Serrano and Miraldo [21], in which
atoms have a wider choice of shapes.

The original sum-of-products approach does not handle all
the ground types either, only regular ones [4]. We inherit this
restriction, and cannot represent recursive families which
involve existentials or GADTs. The problem in this case is
representing the constraints that each constructor imposes
on the type arguments.
Our generics-mrsop is a powerful library for generic

programming that combines the advantages of previous ap-
proaches to generic programming.We have carefully blended
the information about (mutually) recursive positions from
multirec, with the sums-of-products codes introduced by
generics-sop, while maintaining the advantages of both.
The programmer is now able to use simple, combinator-based
generic programming for a more expressive class of types
than the sums-of-products approach allows. This is interest-
ing, especially since mutually recursive types were hard to
handle in a generic fashion previous to generics-mrsop.

References
[1] Michael D. Adams. 2010. Scrap Your Zippers: A Generic Zipper for

Heterogeneous Types. InWGP ’10: Proceedings of the 2010 ACM SIG-
PLAN workshop on Generic programming. ACM, New York, NY, USA,
13–24. https://doi.org/10.1145/1863495.1863499

[2] Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and
Peter Morris. 2015. Indexed containers. Journal of Functional Program-
ming 25 (2015).

https://doi.org/10.1145/1863495.1863499

Sums of Products for Mutually Recursive Datatypes TyDe ’18, September 27, 2018, St. Louis, MO, USA

[3] Christophe Calvès and Maribel Fernández. 2008. Nominal Matching
and Alpha-Equivalence. In Logic, Language, Information and Compu-
tation, Wilfrid Hodges and Ruy de Queiroz (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 111–122.

[4] Edsko de Vries and Andres Löh. 2014. True Sums of Products. In
Proceedings of the 10th ACM SIGPLAN Workshop on Generic Pro-
gramming (WGP ’14). ACM, New York, NY, USA, 83–94. https:
//doi.org/10.1145/2633628.2633634

[5] Richard A. Eisenberg and StephanieWeirich. 2012. Dependently Typed
Programming with Singletons. SIGPLAN Not. 47, 12 (Sept. 2012), 117–
130. https://doi.org/10.1145/2430532.2364522

[6] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed.
2016. Visible Type Application. In Programming Languages and Systems
- 25th European Symposium on Programming, ESOP 2016, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings
(Lecture Notes in Computer Science), Peter Thiemann (Ed.), Vol. 9632.
Springer, 229–254.

[7] Jeremy Gibbons. 2006. Design Patterns As Higher-order Datatype-
generic Programs. In Proceedings of the 2006 ACM SIGPLAN Workshop
on Generic Programming (WGP ’06). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/1159861.1159863

[8] Ralf Hinze, Johan Jeuring, and Andres LÃűh. 2004. Type-indexed
data types. Science of Computer Programming 51, 1 (2004), 117 – 151.
https://doi.org/10.1016/j.scico.2003.07.001 Mathematics of Program
Construction (MPC 2002).

[9] Gérard Huet. 1997. The Zipper. Journal of Functional Programming 7,
5 (1997), 549âĂŞ554.

[10] Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A
Practical Design Pattern for Generic Programming. In Proceedings of
the 2003 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation (TLDI ’03). ACM, New York, NY, USA,
26–37. https://doi.org/10.1145/604174.604179

[11] Andres Löh and José Pedro Magalhaes. 2011. Generic programming
with indexed functors. In Proceedings of the seventh ACM SIGPLAN
workshop on Generic programming. ACM, 1–12.

[12] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh.
2010. A Generic Deriving Mechanism for Haskell. In Proceedings of
the Third ACM Haskell Symposium on Haskell (Haskell ’10). ACM, New
York, NY, USA, 37–48. https://doi.org/10.1145/1863523.1863529

[13] José Pedro Magalhães and Andres Löh. 2012. A Formal Compari-
son of Approaches to Datatype-Generic Programming. In Proceed-
ings Fourth Workshop on Mathematically Structured Functional Pro-
gramming, Tallinn, Estonia, 25 March 2012 (Electronic Proceedings
in Theoretical Computer Science), James Chapman and Paul Blain
Levy (Eds.), Vol. 76. Open Publishing Association, 50–67. https:
//doi.org/10.4204/EPTCS.76.6

[14] Simon Marlow et al. 2010. Haskell 2010 Language Report. https:
//www.haskell.org/onlinereport/haskell2010/.

[15] Victor Cacciari Miraldo, Pierre-Évariste Dagand, and Wouter Swier-
stra. 2017. Type-directed Diffing of Structured Data. In Proceedings
of the 2Nd ACM SIGPLAN International Workshop on Type-Driven
Development (TyDe 2017). ACM, New York, NY, USA, 2–15. https:
//doi.org/10.1145/3122975.3122976

[16] Neil Mitchell and Colin Runciman. 2007. Uniform Boilerplate and
List Processing. In Proceedings of the ACM SIGPLAN Workshop on
Haskell Workshop (Haskell ’07). ACM, New York, NY, USA, 49–60.
https://doi.org/10.1145/1291201.1291208

[17] Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan Jeur-
ing, and Bastiaan Heeren. 2008. A Lightweight Approach to Datatype-
generic Rewriting. In Proceedings of the ACM SIGPLAN Workshop on
Generic Programming (WGP ’08). ACM, New York, NY, USA, 13–24.
https://doi.org/10.1145/1411318.1411321

[18] Matthew Pickering, Gergő Érdi, Simon Peyton Jones, and Richard A.
Eisenberg. 2016. Pattern Synonyms. In Proceedings of the 9th Interna-
tional Symposium on Haskell (Haskell 2016). ACM, New York, NY, USA,
80–91. https://doi.org/10.1145/2976002.2976013

[19] Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg
Kiselyov, and Bruno C. d. S. Oliveira. 2008. Comparing Libraries
for Generic Programming in Haskell. In Proceedings of the First ACM
SIGPLAN Symposium on Haskell (Haskell ’08). ACM, New York, NY,
USA, 111–122. https://doi.org/10.1145/1411286.1411301

[20] Alejandro Serrano and Jurriaan Hage. 2016. Generic Matching of Tree
Regular Expressions over Haskell Data Types. In Practical Aspects of
Declarative Languages - 18th International Symposium, PADL 2016, St.
Petersburg, FL, USA, January 18-19, 2016. Proceedings. 83–98. https:
//doi.org/10.1007/978-3-319-28228-2_6

[21] Alejandro Serrano and Victor Cacciari Miraldo. 2018. Generic Pro-
gramming of All Kinds. In Conditionally accepted to Haskell Symposium
2018 (Haskell ’18).

[22] Tim Sheard and Simon Peyton Jones. 2002. Template meta-
programming for Haskell. 1–16. https://www.microsoft.com/en-us/
research/publication/template-meta-programming-for-haskell/

[23] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System
FC with Explicit Kind Equality. SIGPLAN Not. 48, 9 (Sept. 2013), 275–
286. https://doi.org/10.1145/2544174.2500599

[24] Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de
Amorim, and Richard A. Eisenberg. 2017. A Specification for De-
pendent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article
31 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110275

[25] Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. 2011. Binders
Unbound. In Proceedings of the 16th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’11). ACM, New York, NY,
USA, 333–345. https://doi.org/10.1145/2034773.2034818

[26] Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded Recur-
sive Datatype Constructors. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
’03). ACM, New York, NY, USA, 224–235. https://doi.org/10.1145/
604131.604150

[27] Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and
Johan Jeuring. 2009. Generic Programming with Fixed Points for
Mutually Recursive Datatypes. In Proceedings of the 14th ACMSIGPLAN
International Conference on Functional Programming (ICFP ’09). ACM,
New York, NY, USA, 233–244. https://doi.org/10.1145/1596550.1596585

[28] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. 2012. Giving Haskell
a Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on
Types in Language Design and Implementation (TLDI ’12). ACM, New
York, NY, USA, 53–66. https://doi.org/10.1145/2103786.2103795

https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/2430532.2364522
https://doi.org/10.1145/1159861.1159863
https://doi.org/10.1016/j.scico.2003.07.001
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.4204/EPTCS.76.6
https://doi.org/10.4204/EPTCS.76.6
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1145/3122975.3122976
https://doi.org/10.1145/3122975.3122976
https://doi.org/10.1145/1291201.1291208
https://doi.org/10.1145/1411318.1411321
https://doi.org/10.1145/2976002.2976013
https://doi.org/10.1145/1411286.1411301
https://doi.org/10.1007/978-3-319-28228-2_6
https://doi.org/10.1007/978-3-319-28228-2_6
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://doi.org/10.1145/2544174.2500599
https://doi.org/10.1145/3110275
https://doi.org/10.1145/2034773.2034818
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/1596550.1596585
https://doi.org/10.1145/2103786.2103795

TyDe ’18, September 27, 2018, St. Louis, MO, USA Victor Cacciari Miraldo and Alejandro Serrano

A The Generic Zipper
To add to our examples section we conduct a validation
exercise involving a more complex application of generic
programming. Zippers [9] are a well established technique
for traversing a recursive data structure keeping track of
the current focus point. Defining generic zippers is nothing
new, this has been done by many authors [1, 8, 27] for many
different classes of types in the past. To the best of the authors
knowledge, this is the first definition in a direct sums-of-
products style. We will not be explaining are zippers are in
detail, instead, we will give a quick reminder and show how
zippers fit within our framework.

Generally speaking, the zipper keeps track of a focus point
in a data structure and allows for the user to conveniently
move this focus point and to apply functions to whatever is
under focus. This focus point is expressed by the means of a
location type, Loc, with a couple of associated functions:

up, dowm, right :: Loc a → Maybe (Loc a)
update :: (a → a) → Loc a → Loc a

Where a and Loc a are isomorphic, and can be converted
by the means of enter and leave functions. For instance, the
composition of down, down, right , update f will essentially
move the focus two layers down from the root, then one
element to the right and apply function f to the focused
element, as shown below.

a

b

c1 c2 c3

d ⇒

a

b

c1 f c2 c3

d

In our case, this location type consists of a distinguished
element of the family El fam ix and a stack of contexts with
a hole of type ix, where we can plug in the distinguished
element. This stack of contexts may build a value whose type
is a different member of the family; we recall its index as iy.

For the sake of conciseness we present the datatypes for a
fixed interpretation of opaque types ki :: kon → ∗, a family
fam :: [∗] and its associated codes codes :: [[[Atom kon]]].
In the actual implementation all those elements appear as
additional parameters to Loc and Ctxs.

data Loc :: Nat → ∗ where
Loc :: El fam iy → Ctxs ix iy → Loc ix

The second field of Loc, the stack of contexts, represents
how deep into the recursive tree we have descended so far.
Each time we unwrap another layer of recursion, we push
some context onto the stack to be able to go back up. Note
how the Cons constructor resembles some sort of composi-
tion operation.

data Ctxs :: Nat → Nat → ∗ where
Nil :: Ctxs ix ix
Cons :: Ctx (Lkup codes iz) iy → Ctxs ix iz → Ctxs ix iy

Each element in this stack is an individual context,Ctx c iy.
A context is defined by a choice of a constructor for the code
c, paired a product of the correct type where one of the ele-
ments is a hole. This hole represents where the distinguished
element in Loc was supposed to be.

data Ctx :: [[Atom kon]] → Nat → ∗ where
Ctx :: Constr n c → NP□ (Lkup n c) iy → Ctx c iy

data NP□ :: [Atom kon] → Nat → ∗ where
Here :: NP (NA ki (El fam)) xs → NP□ (I ix:xs) ix
There :: NA ki (El fam) x → NP□ xs ix → NP□ (x :xs) ix

The navigation functions are a direct translation of those
defined for the multirec [27] library, that use the first, fill,
and next primitives for working over Ctxs. The fill function
can be taken over almost unchanged, whereas first and next
require a simple trick: we have to wrap the Nat parameter of
NP□ in an existential in order to manipulate it conveniently.
The ix is packed up in an existential type since we do not
really know beforehand which member of the mutually re-
cursive family is seen first in an arbitrary product.

data ∃NP□ :: [Atom kon] → ∗ where
Witness :: El fam ix → NP□ c ix → ∃NP□ c

Now we can define the first∃ and next∃, the counterparts
of first and next from multirec. Intuitively, first∃ returns the
NP□ with the first recursive position (if any) selected, next∃
tries to find the next recursive position in an NP□. These
functions have the following types:

first∃ :: NP (NA ki (El fam)) xs → Maybe (∃NP□ xs)
next∃ :: ∃NP□ xs → Maybe (∃NP□ xs)

To conclude we can now use flipped compositions for
pure functions (≫) :: (a → b) → (b → c) → a → c and
monadic functions (>=>) :: (Monad m) ⇒ (a → m b) →
(b → m c) → a → m c to elegantly write some loca-
tion based instruction to transform some value of the type
Termλ defined in Section 5.2. Here enter and leave witness
the isomorphism between El fam ix and Loc ix.

tr :: Termλ → Maybe Termλ
tr = enter ≫ down

>=> right
>=> update (const $ Var “c”)
≫ leave
≫ return

tr (App (Var “a”) (Var “b”))
≡ Just (App (Var “a”) (Var “c”))

We invite the reader to check the source code for a more
detailed account of the generic zipper. In fact, we were able
to provide the same zipper interface as the multirec library.
Our implementation is shorter, however. This is because we
do not need type classes to implement first∃ and next∃.

Sums of Products for Mutually Recursive Datatypes TyDe ’18, September 27, 2018, St. Louis, MO, USA

B Template Haskell
Having a convenient and robust way to get the Family in-
stance for a given selection of datatypes is paramount for
the usability of our library. In a real scenario, a mutually
recursive family may consist of many datatypes with dozens
of constructors. Sometimes these datatypes are written with
parameters, or come from external libraries.

Our goal is to automate the generation of Family instances
under all those circumstances using Template Haskell [22].
From the programmers’ point of view, they only need to call
deriveFamily with the topmost (that is, the first) type of the
family. For example:

data Exp var = . . .
data Stmt var = . . .
data Decl var = . . .
data Prog var = . . .

deriveFamily [t |Prog String |]

The deriveFamily takes care of unfolding the (type level)
recursion until it reaches a fixpoint. In this case, the type
synonym FamProgString = ′[Prog String, . . .] will be gener-
ated, together with its Family instance. Optionally, one can
also pass along a custom function to decide whether a type
should be considered opaque. By default, it uses a selection
of Haskell built-in types as opaque types.

B.1 Unfolding the Family
The process of deriving a whole mutually recursive family
from a single member is conceptually divided into two dis-
joint processes. First we unfold all definitions and follow all
the recursive paths until we reach a fixpoint. At that moment
we know that we have discovered all the types in the fam-
ily. Second, we translate the definition of those types to the
format our library expects. During the unfolding process we
keep a key-value map in a State monad, keeping track of the
types we have seen, the types we have seen and processed
and the indices of those within the family.
Let us illustrate this process in a bit more detail using

our running example of a mutually recursive family and
consider what happens within Template Haskell when it
starts unfolding the deriveFamily clause.

data Rose a = Fork a [Rose a]
data [a] = [] | a:[a]

deriveFamily [t |Rose Int |]

The first thing that happens is registering that we seen
the type Rose Int. Since it is the first type to be discovered,
it is assigned index zero within the family. Next we need to
reify the definition of Rose. At this point, we query Template
Haskell for the definition, and we obtain data Rose x =
Fork x [Rose x]. Since Rose has kind ∗ → ∗, it cannot be
directly translated – our library only supports ground types,
which are those with kind ∗. But we do not need a generic
definition for Rose, we just need the specific case where

x = Int. Essentially, we just apply the reified definition of
Rose to Int and β-reduce it, giving us Fork Int [Rose Int].
The next processing step is looking into the types of the

fields of the (single) constructor Fork. First we see Int and de-
cide it is an opaque type, say KInt. Second, we see [Rose Int]
and notice it is the first time we see this type. Hence, we
register it with a fresh index, S Z in this case. The final result
for Rose Int is ′[′[K KInt, I (S Z)]].

We now go into [Rose Int] for processing. Once again we
need to perform some amount of β-reduction at the type
level before inspecting its fields. The rest of the process is
the same that for Rose Int. However, when we encounter the
field of type Rose Int this is already registered, so we just
need to use the index Z in that position.
The final step is generating the actual Haskell code from

the data obtained in the previous process. This is a very
verbose and mechanical process, whose details we omit. In
short, we generate the necessary type synonyms, pattern
synonyms, the Family instance, and metadata information.
The generated type synonyms are named after the topmost
type of the family, passed to deriveFamily:

type FamRoseInt
= ′[Rose Int , [Rose Int]]

type CodesRoseInt
= ′[′[′[K KInt, I (S Z)]], ′[′[], ′[I Z , I (S Z)]]]

Pattern synonyms are useful for convenient patternmatch-
ing and injecting into the View datatype. We produce two
different kinds of pattern synonyms. First, synonyms for
generic representations, one per constructor. Second, syn-
onyms which associate each type in the recursive family
with their position in the list of codes.

pattern Fork x xs = Tag SZ (NAK x × NAI xs × NP0)
pattern [] = Tag SZ NP0
pattern x : xs = Tag (SS SZ) (NAI x × NAI xs × NP0)

pattern RoseInt = SZ
pattern ListRoseInt = SS SZ

The actual Family instance is exactly as the one shown in
Section 4

instance Family Singl FamRoseInt CodesRoseInt where . . .

C Metadata
The representations described in this paper is enough to
write generic equalities and zippers. But there is one missing
ingredient to derive generic pretty-printing or conversion to
JSON, for instance. We need to maintain the metadata infor-
mation of our datatypes. This metadata includes the datatype
name, the module where it was defined, and the name of the
constructors. Without this information you cannot write a
function which outputs the string
Fork 1 [Fork 2 [], Fork 3 []]

TyDe ’18, September 27, 2018, St. Louis, MO, USA Victor Cacciari Miraldo and Alejandro Serrano

for a call to genericShow (Fork 1 [Fork 2 [], Fork 3 []]).
The reason is that the code of Rose Int does not contain the
information that the constructor of Rose is called “Fork”.

Like in generics-sop [4], having the code for a family of
datatypes available allows for a completely separate treat-
ment of metadata. This is yet another advantage of the sum-
of-products approachwhen compared to themore traditional
pattern functors. In fact, our handling of metadata is heav-
ily inspired from generics-sop, so much so that we will
start by explaining a simplified version of their handling of
metadata, and then outline the differences to our approach.
The general idea is to store the meta information fol-

lowing the structure of the datatype itself. So, instead of
data, we keep track of the names of the different parts and
other meta information that can be useful. It is advantageous
to keep metadata separate from the generic representation
as it would only clutter the definition of generic function-
ality. This information is tied to a datatype by means of
an additional type class HasDatatypeInfo. Generic functions
may now query the metadata by means of functions like
datatypeName, which reflect the type information into the
term level. The definitions are given in Figure 8.

Our library uses the same approach to handle metadata. In
fact, the code remains almost unchanged, except for adapting
it to the larger universe of datatypes we can now handle.
Unlike generic-sop, our list of lists representing the sum-
of-products structure does not contain types of kind ∗, but
Atoms. All the types representing metadata at the type level
must be updated to reflect this new scenario:

data DatatypeInfo :: [[Atom kon]] → ∗ where...
data ConstructorInfo :: [Atom kon] → ∗ where...
data FieldInfo :: Atom kon → ∗ where...

As we have discussed above, our library is able to gen-
erate codes not only for single types of kind ∗, like Int or
Bool, but also for types which are the result of type level
applications, such as Rose Int and [Rose Int]. The shape of

the metadata information in DatatypeInfo, a module name
plus a datatype name, is not enough to handle these cases.
We replace the uses of ModuleName and DatatypeName in
DatatypeInfo by a richer promoted type TypeName, which
can describe applications, as required.

data TypeName = ConT ModuleName DatatypeName
| TypeName :@: TypeName

data DatatypeInfo :: [[Atom kon]] → ∗ where
ADT :: TypeName → NP ConstructorInfo cs

→ DatatypeInfo cs
New :: TypeName → ConstructorInfo ′[c]

→ DatatypeInfo ′[′[c]]

The most important difference to generics-sop, perhaps,
is that the metadata is not defined for a single type, but for a
type within a family. This is reflected in the new signature
of datatypeInfo, which receives proxies for both the family
and the type. The type equalities in that signature reflect the
fact that the given type ty is included with index ix within
the family fam. This step is needed to look up the code for
the type in the right position of codes.

class (Family κ fam codes)
⇒ HasDatatypeInfo κ fam codes ix
| fam → κ codes where

datatypeInfo :: (ix ∼ Idx ty fam, Lkup ix fam ∼ ty)
⇒ Proxy fam → Proxy ty
→ DatatypeInfo (Lkup ix codes)

The Template Haskell will then generate something sim-
ilar to the instance below for the first type in the family,
Rose Int:

instance HasDatatypeInfo Singl FamRose CodesRose Z where
datatypeInfo
= ADT (ConT “E” “Rose” :@: ConT “Prelude” “Int”)
$ (Constructor “Fork”) × NP0

Once all the metadata is in place, we can use it in the same
fashion as generics-sop. We refer the interested reader to
de Vries and Löh [4] for examples.

Sums of Products for Mutually Recursive Datatypes TyDe ’18, September 27, 2018, St. Louis, MO, USA

data DatatypeInfo :: [[∗]] → ∗ where
ADT :: ModuleName → DatatypeName → NP ConstructorInfo cs → DatatypeInfo cs
New :: ModuleName → DatatypeName → ConstructorInfo ′[c] → DatatypeInfo ′[′[c]]

data ConstructorInfo :: [∗] → ∗ where
Constructor :: ConstructorName → ConstructorInfo xs
Infix :: ConstructorName → Associativity → Fixity → ConstructorInfo ′[x, y]
Record :: ConstructorName → NP FieldInfo xs → ConstructorInfo xs

data FieldInfo :: ∗ → ∗ where
FieldInfo :: FieldName → FieldInfo a

class HasDatatypeInfo a where
datatypeInfo :: proxy a → DatatypeInfo (Code a)

Figure 8. Definitions related to metadata from generics-sop

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Design Space

	2 Background
	2.1 GHC Generics
	2.2 Explicit Sums of Products

	3 Explicit Fix: Diving Deep and Shallow
	4 Mutual Recursion
	4.1 Parametrized Opaque Types
	4.2 Combinators

	5 Examples
	5.1 Equality
	5.2 -Equivalence

	6 Conclusion and Future Work
	References
	A The Generic Zipper
	B Template Haskell
	B.1 Unfolding the Family

	C Metadata

