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Abstract. The type class system in the Haskell Programming language
provides a useful abstraction for a wide range of types, such as those that
support comparison, serialization, ordering, between others. This system
can be extended by the programmer by providing custom instances to
one’s custom types. Yet, this is often a monotonous task. Some notions,
such as equality, are very regular regardless if it is being encoded for a
ground type or a type constructor. In this paper we present a technique
that unifies the treatment of ground types and type constructors whenever
possible. This reduces code duplication and improves consistency. We
discuss the encoding of several classes in this form, including the generic
programming facility in GHC.

Keywords: Haskell · Type classes · Generic programming.

1 Introduction

Type classes [16] are a widely used abstraction provided by the Haskell program-
ming language. In their simplest incarnation, a type class defines a set of methods
which every instance must implement, for instance:

class Eq a where
(≡) :: a → a → Bool

Where we are stating that a type a can be an instance of Eq as long as it imple-
ments (≡). This is a very useful mechanism, as it allows a programmer to write
polymorphic functions but impose some restrictions on the types. For instance,
consider the type of the nub function below:

nub :: (Eq a)⇒ [a ]→ [a ]

It receives a list of arbitrary a’s, as long we can compare these values for equality.
It returns a list of the same type, but removes every duplicate element.

The base library comes pre-packaged with instances for built-in types, such
as integers, Booleans and lists. But the programmer is also allowed to extend
this set of instances. For example, here is a data type representing binary trees
with values in the internal nodes:

data Tree a = Leaf | Node (Tree a) a (Tree a)

Its corresponding instance for the Eq class is defined as:

? Supported by NWO project 612.001.401.
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instance Eq a ⇒ Eq (Tree a) where
Leaf ≡ Leaf = True
(Node `1 x1 r1 ) ≡ (Node `2 x2 r2 ) = x1 ≡ x2 ∧ `1 ≡ `2 ∧ r1 ≡ r2

≡ = False

This example highlights one of the important features of the type class system:
the availability for an instance of Tree a, in this case, depends on the availability
of an instance for the type a. In other words, in order to compare a Tree a for
equality, we must also be able to compare values of type a, since these are the
elements in the nodes of our tree. That way, we know that equality is defined
for Tree Bool — since Bool is a member of the Eq type class — but not for
Tree (Int → Bool) — since functions cannot be compared for equality.

Our Tree data type is also an instance of the Functor class, which states that
we can change a Tree a into a Tree b as long as we can change one a into one b.
We do so by applying this transformation uniformly in the nodes of the tree. In
Haskell, we would say:

class Functor f where
fmap :: (a → b)→ f a → f b

instance Functor Tree where
fmap Leaf = Leaf
fmap f (Node ` x r) = Node (fmap f `) (f x ) (fmap f r)

There is a subtle difference between Eq and Functor that is central to our
work. The Eq class receives ground types, such as Int and Tree Bool ; whereas
the Functor receives type constructors, such as Tree. In Haskell we distinguish
between those by the means of kinds. The intuition is that a kind is the “type of
types”. By convention, ground types have kind ?. Therefore, our Tree type is of
kind ?→ ?, that is, given a ground type as an argument, it produces a ground
type. The kind system prevents us from writing nonsensical statements such as
Functor Int , since Functor expects something of kind ?→ ? and Int has kind ?.

There are several extensions to the type class mechanism, such as functional
dependencies [7], and associated types [4]. For the purpose of this paper, though,
we shall consider only the simpler version described above, with the occasional
appearance of multi-parameter type classes [11].

1.1 Concepts of arbitrary kind

We can declare that lists support equality provided that their elements do so:

instance (Eq a)⇒ Eq [a ] where ...

However, lists support an even stronger notion of comparison: if we provide a
comparison function between elements of types a and b, we can uniformly lift
this operation to act over [a ] and [b ]. This concept is captured by the Eq1 type
class, which can be found in GHC’s base library:

class Eq1 (f :: ?→ ?) where
liftEq :: (a → b → Bool)→ f a → f b → Bool
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Following the same line of thought, we might be inclined to derive a similar
notion for the Either a b type. This is a type constructor with two arguments that
can be compared in a similar way, but this time we would need two comparison
functions in order to compare a Either a b with a Either c d . Alas, we need to
introduce yet another type class, since Eq1 only works for types of kind ?→ ?:

class Eq2 (f :: ?→ ?→ ?) where
liftEq2 :: (a → b → Bool)→ (c → d → Bool)

→ f a c → f b d → Bool

instance Eq2 Either where
liftEq2 p (Left x ) (Left y) = p x y
liftEq2 q (Right x ) (Right y) = q x y
liftEq2 = False

The notion of lifting equality makes sense for arbitrary kinds: Eq , Eq1 , Eq2 ,
and so on. Where Eq is seen as the Eq0 member of this sequence, where we do
not take any equality function as argument because the type in question has no
type parameters.

We can witness the same pattern for the Monoid and Alternative type classes,
provided in the base library:

class Monoid (m :: ?) where class Alternative (f :: ?→ ?) where
mempty :: a empty :: f a
mappend :: a → a → a (〈|〉) :: f a → f a → f a

A monoid is a type embodied with a way to combine two elements, mappend ,
which satisfies associativity and for which mempty acts as neutral element. An
instance of Alternative for a type constructor C essentially states that C a can
be used as a monoid, regardless of the element a contained in the structure.

The relationship between Monoid and Alternative is different from that
between Eq and Eq1 : in the latter case we lift a growing sequence of functions,
whereas in the former the type has the same shape regardless of the kind at play.
Nevertheless, the programmer has to write a new class for every different kind,
even though this might be a very regular notion.

1.2 Contributions

The main contribution of this paper is a pattern to define “once and for all”
type classes to encompass notions such as Eq and Monoid which extend to
arbitrary kinds. We borrow a technique from recent developmens in generic
programming [14], enabling us to represent type applications uniformly (Section 2)
and showcase its usage in the definition of type classes (Section 3). As it turns
out, the ability of handling type applications on the term level has far more use
than solely generic programming.

We also discuss an extension of the generic programming mechanism in
GHC [8] to represent types of arbitrary kinds (Section 4). Our approach can be
seen as a translation from the techniques introduced by Serrano and Miraldo [14]
to the world of pattern functors.



4 A. Serrano and V. Miraldo

2 Representing Type Application

The core issue is the inability to represent a type that is applied to n type
variables. For the Eq case, we ultimately want write something in the lines of:

class Eqn (f :: ?→ ...→ ?) where
liftEqn :: (a1 → b1 → Bool)→ ...→ (an → bn → Bool)

→ f a1 ... an → f b1 ... bn → Bool

Yet, simple Haskell without any extension does not allow us to talk about
a type variable f applied to “as many arguments as it needs”. In fact, we
require some of the later developments on the Haskell language to be able to
uniformly talk about types of arbitrary kinds. These developments include data
type promotion [21] and partial support for dependent types [18].

The key idea is to split a type application such as f a b c in two parts: the
head f , and the list of types 〈a, b, c〉. Afterwards, we define an operator (:@@:)
which applies a list of types to a head. For example, we should have:

f :@@: 〈a, b, c〉 ≈ f a b c

where the ≈ denotes isomorphism.
Naturally, we want to rule our incorrect applications of the (:@@:) operator.

For example, Int :@@: 〈Int〉. should be flagged as wrong, since Int is not a type
constructor, and thus cannot take arguments. In a similar fashion, Tree :@@:〈Tree〉
should not be allowed, because Tree needs a ground type as argument. The
required information to know whether a list of types can be applied to a head
must be derived from the kind of the head. The solution is to add an index to
the type Γ that keeps track of the kind of such environment. The definition is
written as a Generalized Algebraic Data Type, which means that we give the
type of each constructor explicitly:

infixr 5 :&:
data Γ k where
ε :: Γ (?)
(:&:) :: k → Γ ks → Γ (k → ks)

An empty list of types is represented by ε. If we apply such a list of types
with a goal of getting a ground type, this implies that the kind we started with
was already ?, as reflected in the index of this constructor. The other possibility
is to attach a type of kind k to a list of types with kind ks, represented by the
constructor (:&:). Here are some examples of lists of types with different indices:

Int :&: ε :: Γ (?→ ?)
Int :&: Bool :&: ε :: Γ (?→ ?→ ?)
Tree :&: Bool :&: ε :: Γ ((?→ ?)→ ?→ ?)

The next step is the definition of the (:@@:) operator.

data (f :: k) :@@: (tys :: Γ k) :: ? where
A0 :: f → f :@@: ε
Arg :: f t :@@: ts → f :@@: (t :&: ts)
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We abstain from using type families [13] since defining functions whose
arguments are applied families is hard in practice. For instance, if we had defined
(:@@:) as follows:

type family (f :: k) :@@:fam (tys :: Γ k) :: ? where
f :@@:fam ε = f
f :@@:fam (a :&: as) = (f a) :@@:fam as

Then writing a simple function that is polymorphic on the number, such as:

g :: f :@@:fam tys → String
g = “Hello, PADLers!”

Would be rejected by the compiler with the following error message:

Couldn’t match type ’f :@: tys’ with ’f0 :@: tys0’

Expected type: f :@: tys -> String

Actual type: f0 :@: tys0 -> String

NB: ’(:@:)’ is a non-injective type family

The type variables ’f0’, ’tys0’ are ambiguous

The problem is that type families are not necessarily injective. That is, the
result of f :@@:fam tys is not sufficient to fix the values of the type variables f
and tys in the type of g . This is not a problem with the type checking algorithm;
these three different choices of f and tys are all equal to the same type:

Either :@@:fam (Int :&: Bool :&: ε) ≡ Either Int Bool
Either Int :@@:fam (Bool :&: ε) ≡ Either Int Bool
Either Int Bool :@@:fam ε ≡ Either Int Bool

Hence, we stick with GADTs, which allows us to write the g function above.
However, when we call the function we need to wrap the argument with con-
structor A0 and Arg . The amount of Arg constructors expresses how many of
the arguments go into the list of types. For example:

g (A0 (Left 3))  f = Either Int Bool , tys = ε
g (Arg (Arg (A0 (Left 3))))  f = Either , tys = Int :&: Bool :&: ε

This need to be explicit about the amount of type variables is definitely cum-
bersome. In Section 3.2 we define a type class which allows us to convert easily
between uses of (:@@:) and (:@@:fam).

Better pattern matching. A related problem with the usage of (:@@:) is the need
of nested Arg constructors, both in building values and pattern matching over
them. Fortunately, we can reduce the number of characters by using pattern
synonyms [12].

For the purposes of this paper, it is enough to provide synonyms from nested
sequences of Arg up to length 2:

pattern A1 x = Arg (A0 x )
pattern A2 x = Arg (A1 x )

This means that we could have written the latest example using g as simply
g (A2 (Left 3)).
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3 Arbitrary-kind Type Classes

With the necessary tools at hand, we are ready to discuss how to define type
classes for notions which exist in arbitrary kinds. Being able to access the type
application structure on the term level, with (:@@:), is essential. In what follows,
we look at this construction by a series of increasingly complex type classes which
generalize the well-known Show , Eq , and Functor .

Generalizing Show. In its bare bones version, Show specifies how to turn a value
into a string. One could define a simplistic1 version of Show as:

class Show t where
show :: t → String

To specify that we want Show to work on arbitrary kinds, we need to add a kind
signature to its definition, and change the type of the show method to apply a
list of types:2

class Show� (f :: k) where
show� :: f :@@: tys → String

We can define an instance for integers by piggybacking on the usual version of
Show provided in Haskell’s base library:

instance Show� Int where
show� (A0 n) = show n

Note that since we are dealing with values of the data type (:@@:), we need to
pattern match on A0 to obtain the integer value itself.

If we try to write similar code for the Maybe type constructor, we will bump
into an error. Consider the following Show� Maybe instance:

instance Show� Maybe where
show� (Arg (A0 Nothing)) = “Nothing”
show� (Arg (A0 (Just x ))) = “Just (” ++ show� (A0 x ) ++ “)”

The compiler complains with:

Could not deduce (Show� t) arising from a use of ’show�’

The problem is in the call show� (A0 x ) and stems from the fact that we have
not provided any proof that the contents inside the Just constructor can be
“shown”. Let us recall the Show instance for Maybe a:

instance Show a ⇒ Show (Maybe a) where ...

Note how this instance requires a proof that a is also an instance of Show .
We therefore need a mechanism to specify that the arguments of Maybe :@@: tys ,
that is, tys, can be shown. That is, we need to specify some constraint over
tys. This will allow us to call show� with a list of types tys whenever every

1 The actual Haskell definition contains functions to deal with operator precedence
and efficient construction of Strings.

2 We use the notation f� to refer to the generalized version of f .
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element of this list is also member of Show�. In order to define this constraint we
require ConstraintKinds [1] GHC extension. In summary, this extension enables
the manipulation of everything that appears before the⇒ arrow in a Haskell type
as if it was a regular type. The only difference is in the kind: normal arguments
to functions must be of a type of kind ?, implicit arguments, to the left of the ⇒,
must be of kind Constraint .

We will now define a constraint that depends on the types tys that are applied
to a type constructor with f :@@: tys . This definition will proceed by induction on
the structure of tys . For the specific Show� case we define the following AllShow�

constraint. Note here that the syntax for an empty constraint is () in GHC, and
the conjunction of constraints is represented by tupling:

type family AllShow� (tys :: Γ k) :: Constraint where
AllShow� ε = ()
AllShow� (t :&: ts) = (Show� t ,AllShow� ts)

Finally we introduce this constraint in the type of show�:

class Show� (f :: k) where
show� :: AllShow� tys ⇒ f :@@: tys → String

The Show� instance for Maybe shown above is now accepted, since AllShow�

applied to a list of types of the form t :&: ε reduces to a constraint Show� t .

Generalizing Eq. The generalized equality class is slightly more complicated; the
number of arguments to the liftEq function changes between classes:

(≡) :: a → b → Bool
liftEq :: (a → b → Bool) → f a → f b → Bool
liftEq2 :: (a → b → Bool)→ (c → d → Bool)→ f a c → f b d → Bool

Hence, the number of arguments in this case is dictated by the kind of the type
constructor f : one per appearance of ?. We will use a similar technique to Show�,
and define a data type by induction on the structure of the type applications.
This new data type, Predicates, will require a function a → b → Bool for every
pair of types obtained from the corresponding lists:

data Predicates (as :: Γ k) (bs :: Γ k) where
Pε :: Predicates ε ε
P& :: (a → b → Bool)→ Predicates as bs
→ Predicates (a :&: as) (b :&: bs)

Using this data type we can chain as many predicates as we need:

P& f Pε :: Predicates (a : & : ε) (b : & : ε)
P& f (P& g Pε) :: Predicates (a : & : c : & : ε) (b : & : d : & : ε)

The final step to generalize the Eq notion is to use the explicit application
operator (:@@:) in the definition of the type class. The result in this case is:

class Eq� (f :: k) where
eq� :: Predicates as bs → f :@@: as → f :@@: bs → Bool



8 A. Serrano and V. Miraldo

Here are the instances for integers and the instance for Either :

instance Eq� Int where
eq� Pε (A0 x ) (A0 y) = x ≡ y

instance Eq� Either where
eq� (P& l (P& r Pε)) (A2 (Left x )) (A2 (Left y)) = l x y
eq� (P& l (P& r Pε)) (A2 (Right x )) (A2 (Right y)) = r x y
eq� = False

3.1 You-Name-It-Functors

As the final example of our approach, we are going to generalize several notions
of functoriality, including those present in GHC’s base library. With access to
the structure of type applications available through (:@@:), we are able to unify
the Functor , Contravariant , Profunctor and Bifunctor classes with many others.
Recall the Functor type class, which describes how to lift a function into a
container f :

class Functor f where
fmap :: (a → b)→ f a → f b

Many types, such as lists, Maybe, or binary trees, are examples of Functors.
But now take the following data type, which describes a logical predicate:

data Pred a = Pred (a → Bool)

It is not possible to write a Functor instance for this type. However, we can
write one for Contravariant , a variation of Functor in which the function being
lifted goes “in the opposite direction”:

class Contravariant f where
contramap :: (b → a)→ f a → f b

instance Contravariant Pred where
contramap f (Pred p) = Pred (p ◦ f )

These notions generalize to higher kinds. For example, the type Either a b
behaves as a functor for both a and b. That is, if you give a function mapping a
to c, if can be lifted to a function between Either a b to Either c b; and the same
holds for the other type variable. We say that Either is a bifunctor. The type of
functions, a → b, is slightly trickier, because it works as a contravariant functor
in the source type, and as a usual functor in the target type. The name for this
kind of structure is a profunctor. Both structures exist in the base libraries:

class Bifunctor f where
bimap :: (a → b)→ (c → d)→ f a c → f b d

class Profunctor f where
dimap :: (b → a)→ (c → d)→ f a c → f b d

With our techniques, we can develop a unified type class for all of these
notions. The recipe is analogous: we need to specify some information for each
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type argument tys in f :@@: tys. Here we need to know whether each position
maps in the “same” or “opposite” way – we call this the variance of that position.
This is essentially a list of flags whose length must coincide with the number
of type arguments to the type. We copy the approach of Γ and Predicates, and
define a new data type indexed by a kind:

data Variance k where
V ε :: Variance (?)
V :: Variance ks → Variance (? → ks)
W :: Variance ks → Variance (? → ks)
y :: Variance ks → Variance (k → ks)

For the sake of generality, we have also included a y flag which states that a type
variable is not used in any constructor of the data type, and thus we can skip it
in the list of functions to be lifted. Using this Variance type, we can express the
different ways in which Functor , Contravariant , and Bifunctor operate on their
type variables as V V ε, W V ε, and V (V V ε), respectively.

In contrast to the previous examples, to obtain the generalized version of
the Functor we need an extra parameter: we must attach the corresponding
Variance. Given a type constructor its variance is fixed, therefore, it can be
uniquely determined. This is represented by a functional dependency [7]:

class Functor� (f :: k) (v :: Variance k) | f → v where ...

The next step is defining lists of functions that we will need in order to map
a f :@@: tys into a f :@@: txs . This is done in the same fashion as in the previous
examples: by induction on the structure of tys and txs. This time, however,
in addition to the list of types for the source and the target, we also use the
Variance to know which is the direction in which the function should operate:

data Mappings (v :: Variance k) (as :: Γ k) (bs :: Γ k) where
M ε :: Mappings V ε ε ε
M V :: (a → b)→ Mappings vs as bs

→ Mappings (V vs) (a :&: as) (b :&: bs)
M W :: (b → a)→ Mappings vs as bs

→ Mappings (W vs) (a :&: as) (b :&: bs)
M y :: Mappings vs as bs

→ Mappings (y vs) (a :&: as) (b :&: bs)

We are now ready to write the definition of Functor�, by using a list of mappings
as an argument to the generalize fmap� function:

class Functor� (f :: k) (v :: Variance k) | f → v where
fmap� :: Mappings v as bs → f :@@: as → f :@@: bs

What follows are two Functor� instances for types of different kinds, namely,
one for Pred and one for Either .

instance Functor� Pred (W V ε) where
fmap� (M W f M ε) (A1 (Pred p)) = A1 (Pred (p ◦ f )))
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instance Functor� Either (V (V V ε)) where
fmap� (M V f (M V M ε)) (A2 (Left x )) = A2 (Left (f x ))
fmap� (M V (M V g M ε)) (A2 (Right y)) = A2 (Right (g y))

Note how the Functor� Pred (W V ε) instance is equivalent to Contravariant Pred
and similarly Functor� Either (V (V V ε)) is equivalent to Bifunctor Either .
In fact, as a final touch, we can regain the old type classes by giving names to
certain instantiations of the Variance parameter in Functor�:

type Functor f = Functor� f (V V ε)
type Contravariant f = Functor� f (W V ε)
type Bifunctor f = Functor� f (V (V V ε))
type Profunctor f = Functor� f (W (V V ε))

3.2 From Families to Data, and Back Again

The two ways of defining type application, (:@@:fam) and (:@@:), have dual
advantages. In the case of the type family, the caller of the function does not
have to wrap the arguments manually, but the compiler rejects the function if
no further information is given. When using a data type, the compiler accepts
defining functions without further problem, at the expense for the caller having
to introduce A0 and Arg constructors.

The distinction does not have to be that sharp, though. It is simple to write
a type class Ravel which converts between the data type encoding and the type
family encoding:

class Ravel (t :: ?) (f :: k) (tys :: Γ k) | f tys → t where
unravel :: f :@@: tys → f :@@:fam tys
ravel :: f :@@:fam tys → f :@@: tys

instance Ravel t t ε where
unravel (A0 x ) = x
ravel x = A0 x

instance Ravel t (f x ) tys ⇒ Ravel t f (x :&: tys) where
unravel (Arg x ) = unravel x
ravel x = Arg (ravel x )

This way, we can pattern match in elements using (:@@:) when defining function
– and thus working around the problems of ambiguity discussed above – but at
the same time provide an external interface with simpler types by means of the
unravel and ravel conversion functions.

An inmediate application of this type class is the definition of specialized
versions of fmap� for the different variances with a name. Here is the dimap
function from the Profunctor type class:

dimap :: Profunctor f ⇒ (b → a)→ (c → d)→ f a c → f b d
dimap f g = unravel ◦ fmap� (M W f (M V g M ε)) ◦ ravel

We first map the given value of type f a c into f :@@: (a :&: c :&: ε). At that
point we can apply the generic operation fmap�, we need to wrap the operations
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f and g into the Mappings type. We get a result of type f :@@: (b :&: d :&: ε),
which we map back to f b d by means of unravel .

4 Generics for Arbitrary Kinds

As a final note on the applicability of (:@@:), we would like to show how it
immediatly helps in providing support for more types in the already existing
GHC.Generics framework. In this section, we provide a direct translation of
the work of Serrano and Miraldo [14] reusing most of the machinery already
available in GHC instead of relying on complicated type level constructions, as in
the original work. These extensions are available as part of the kind-generics

library in Hackage.

Haskell compilers provide facilities to automatically write instances for
some common classes, including Eq and Show . This mechanism is syntacti-
cally lightweight, the programmer is just required to add a deriving clause at
the end of a data type definition:

data Either a b = Left a | Right b deriving (Eq ,Show)
data Pair a b = Pair a b deriving (Eq ,Show)

GHC extends this facility with a mechanism to write functions which depend
solely on the structure of the data type, but follow the same algorithm otherwise.
This style is called generic programming.

The core idea of generic programming is simple: map data types to a uni-
form representation. Every function which operates on this representation is by
construction generic over the data type. There are several ways to obtain the
uniform representation in a typed setting; the main ones being codes [15, 9, 14],
and pattern functors [10, 20, 8]. The latter is the one used by GHC, and the one
we extend in this section.

In the pattern functor approach, the structure of a data type is expressed by
a combination of the following functors, which act as building blocks:

data U1 a = U1
data K1 p a = K1 a
data (f :∗ : g) a = f a :∗ : g a
data (f :+: g) a = L1 (f a) | R1 (g a)

Let us look at the representation of the aforementioned Either and Pair :

Rep (Either a b) = K1 R a :+: K1 R b
Rep (Pair a b) = K1 R a :∗ : K1 R b

The Either type provides a choice between two constructors. This fact is repre-
sented by using the coproduct functor (:+:). The Pair type, on the other hand,
requires two pieces of information. The product functor (:∗ :) encodes this infor-
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mation. In both cases, each field is represented by the constant functor K1 R.3

The remaining block, U1 , represents a constructor with no fields attached, like
the empty list [ ].

Besides the structure of a type, we also need a map between values in the
original type and its representation. The Generic type class bridges this gap:

class Generic a where
type Rep a :: ?→ ?
from :: a → Rep a x
to :: Rep a x → a

To define an instance of Generic, you need three pieces of information: (1) the
representation Rep, which is a functor composed of the building blocks described
above, (2) how to turn a value of type a into its representation – this is the func-
tion from –, and (3) how to map back – encoded as to. Writing these instances is
mechanical, and GHC automates them by providing a DeriveGeneric extension.

Due to space limitations, we gloss over how to define functions which work
on the generic representations. The interested reader is referred to the work of
Magalhães et al. [8], and the documentation of GHC.Generics.

The first step towards generalizing the Generic type class is to extend its
building blocks for the representations. In the case of the original Rep, we encode
a type of kind ? by a functor of kind ?→ ?; now we are going to encode a type
of kind k by a representation of kind Γ k → ?. The use of a list of types Γ here
is essential, because otherwise we cannot express arbitrary kinds. This approach
deviates from the one taken by GHC, in which type constructors of kind ?→ ?
are also represented by functors of kind ?→ ?. In fact, all we need to do is define
a new K1 since the other combinators are readily compatible.

We solve this problem by introducing a separate data type to encode the
structure of the type of a field [17, 14]. This is nothing more than the applicative
fragment of λ-calculus, in which references to type variables are encoded using
de Bruijn indices:

data TyVar d k where
VZ :: TyVar (x → xs) x
VS :: TyVar xs k → TyVar (x → xs) k

data Atom d k where
Var :: TyVar d k → Atom d k
Kon :: k → Atom d k
(:@:) :: Atom d (k1 → k2 )→ Atom d k1 → Atom d k2

A value of Atom d k represents a type of kind k in an environment with type
variables described by the kind d . TyVar refers to a type variable in the kind
d using Peano numerals, starting from the left-most variable. For example, the
type of the single field of the Right constructor is represented as Var (VS VZ ).

3 The first argument to K1 was used in the past to encode some properties of the
field. However, it has fallen into disuse, and GHC always sets its value to R in any
automatically-derived representation.
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By itself, Atom d k only describes the shape of a type. In order to obtain an
actual type, we need to interpret it with known values for all the type variables. If
one thinks of Atoms as expressions with variables, such as x2 +x+1, interpreting
the Atom boils down to obtaining the value of the expression given a value for
each variable, like x 7→ 5. This interpretation can be defined by recursion on the
structure of the Atom:

type family Ty (t :: Atom d k) (tys :: Γ d) :: k where
Ty (Var VZ ) (t :&: ts) = t
Ty (Var (VS v)) (t :&: ts) = Ty (Var v) ts
Ty (Kon x ) tys = x
Ty (f :@: x ) tys = (Ty f tys) (Ty x tys)

Note that by construction an Atom d k is always interpreted to a type of kind k .
With these ingredients, we can encode the missing building block. In Haskell,

it is required that fields in a data type have a type with kind ?. This is visible in
the definition of F , where t must describe a type with that specific kind:

data F (t :: Atom d (?)) (x :: Γ d) = F (Ty t x )

The representations of Either and Pair look as follows:

Rep� Either = F (Var VZ ) :+: F (Var (VS VZ ))
Rep� Pair = F (Var VZ ) :∗ : F (Var (VS VZ ))

Note the change in the arguments to Rep�. We are no longer defining a family
of representations for every possible choice of type arguments to Either and Pair ,
as we did in the case of Rep. Here we encode precisely the polymorphic structure
of the data types.

Finally, we can wrap it all together with a type class that declares the
isomorphism between values and their generic representation.

class Generic� (f :: k) where
type Rep� f :: Γ k → ?
from� :: f :@@: x → Rep� f x
to� :: Γs x → Rep� f x → f :@@: x

One part of the isomorphism, from�, has a straightforward type. The converse
operation is harder to define though. The problem is that we need to match over
the structure of the list of types, but this information is apparent from the kind
itself. The solution is to use a singleton [5], that is, to introduce a new data type
that completely mimics the shape of the type level information:

data Γs (tys :: Γ k) where
εs :: Γs ε
&s :: Γs ts → Γs (t :&: ts)

By inspecting this singleton value, the compiler gains enough information about
the shape of tys to know that the result is well-formed.
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We can finally give the Generic� instance for Either :

instance Generic� Either where
type Rep Either = F (Var VZ ) :+: F (Var (VS VZ ))

from� (A2 (Left x )) = InL (F x )
from� (A2 (Right y)) = InR (F y)

to� (&s (&s εs)) (InL (F x )) = A2 (Left x )
to� (&s (&s εs)) (InR (F y)) = A2 (Right y)

4.1 Representing Constraints and Existentials

One advantage of this new representation is that it becomes simple to describe
more complicated structures for data types. In particular, it enables us to represent
constructors with constraints and existentials, key ingredients of Generalized
Algebraic Data Types [19] available in Haskell and OCaml, among others.

The case of constraints is very similar to that of regular fields. As we have
discussed several times already, a constraint is seen by GHC as a regular type of
a specific kind Constraint . Since our language of types, Atom, works regardless
of the kind it represents, we can still use it in this new scenario:

data (:⇒:) (c :: Atom d Constraint) (f :: Γ d → ?) (x :: Γ d) where
C :: Ty c x ⇒ f x → (c :⇒: f ) x

The definition of (:⇒:) wraps a representation f with an additional implicit
parameter. This means that by merely pattern matching on the constructor we
make this information available. For example, here is the usual definition of the
Equality data type and its Generic� instance:

data Equals a b where
Refl :: a ∼ b ⇒ Equals a b

instance Generic� Equals where
type Rep� Equals = (Kon (∼) :@: Var VZ :@: Var (VS VZ )) :⇒: U1
from� (A2 Refl) = C U1
to� (&s (&s εs)) (C U1 ) = A2 Refl

Introducing existentials requires more involved types, however.

data E k (f :: Γ (k → d)→ ?) (x :: Γ d) where
E :: forall k (t :: k) d (f :: Γ (k → d)→ ?) (x :: Γ d)
. f (t :&: x )→ E k f x

The E type above provides us with the required kind Γ d → ? given another
representation with the kind Γ (k → d)→ ?. In other words, the argument to E
is another representation where we have an additional type variable available in
the environment. This new type variable refers to the existential introduced.

The following data type, Exists, keeps a value of any type we want, but
this type is not visible as an index to the type. Using E we can describe its
representation in this generic framework:
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data Exists where
Exists :: a → Exists

instance Generic� X where
type Rep� Exists = E (?) (F (Var VZ ))
from� (A0 (Exists x )) = E (F x )
to� εs (E (F x )) = A0 (Exists x )

In conclusion, the introduction of the (:@@:) construction provides a basis
for more expressive generic programming. By defining only one new building
block, F , we are readily able to represent types of arbitrary kind directly. Once
these foundations are laid down, we can accommodate descriptions of types using
constraints and existentials in our generic programming framework.

5 Related Work

Weirich and Casinghino [17] discuss how to encode arity and data type-generic
operations in Agda. There are two main differences between that work and ours.
First, the language of implementation is Agda, a language with full dependent
types, as opposed to Haskell. Second, whereas their goal is to define arity-generic
operations such as map, our goal is to describe notions which exist regardless of
the arity, such as Eq� and Functor�. As a result, we are less concerned about
the implementation of the instances.

The work of Hinze [6] tackles poly-kinded generic programming from a different
point of view. There generic functions defined over representations of the ? are
automatically lifted to data types of higher kinds. It is an interesting avenue to
investigate how much of his method can be translated into our setting.

Quantified class constraints [2] allow the programmer to define type classes
for constructors, such as Show1 , by quantification over the constraints for ground
types. However, the ability to define the class for arbitrary kinds is still missing.
We foresee that a combination of (:@@:) with quantified constraints is possible.

Our representation of types as a type constructor and a list of arguments
resembles the applicative fragment of the spine calculus of [3]. In contrast we do
not impose any restriction about the shape of the head.

6 Conclusion

In this paper we have presented a way to encode the generalities between types of
possibly different kinds by means of polymorphic type classes. The key ingredient
being the definition of the (:@@:) data type, which turns n-ary applications into
the application of one head and a list of types.

We have discussed generalizations of the well-known Show , Eq , and Functor
type classes. In the latter case, we have also discussed how to represent the
variance of a type variable as part of the type class. We have also shown how
one could extend the Generic framework present in GHC to work over types of
arbitrary kind with minimal fuss.
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