
Efficient Structural Differencing

Victor Cacciari Miraldo Wouter Swierstra

Utrecht University

1

Why Structural Differencing?

2

Motivation

Flour , B5, 5

Sugar , B7, 12

...

Flour , B5, 5

Sugar , F0, 12

...

Flour , B5, 5

Sugar , B7, 42

...

Same line changes in two different ways

Not same column

Here, merging requires knowledge about structure

3

Motivation

Flour , B5, 5

Sugar , B7, 12

...

Flour , B5, 5

Sugar , F0, 12

...

Flour , B5, 5

Sugar , B7, 42

...

Same line changes in two different ways

Not same column

Here, merging requires knowledge about structure

3

Motivation

Flour , B5, 5

Sugar , B7, 12

...

Flour , B5, 5

Sugar , F0, 12

...

Flour , B5, 5

Sugar , B7, 42

...

Same line changes in two different ways

Not same column

Here, merging requires knowledge about structure

3

Motivation

Flour , B5, 5

Sugar , B7, 12

...

Flour , B5, 5

Sugar , F0, 12

...

Flour , B5, 5

Sugar , B7, 42

...

Same line changes in two different ways

Not same column

Here, merging requires knowledge about structure

3

Motivation

Flour , B5, 5

Sugar , B7, 12

...

Flour , B5, 5

Sugar , F0, 12

...

Flour , B5, 5

Sugar , B7, 42

...

Same line changes in two different ways

Not same column

Here, merging requires knowledge about structure

3

Motivation

Flour , B5, 5

Sugar , B7, 12

...

Flour , B5, 5

Sugar , F0, 12

...

Flour , B5, 5

Sugar , B7, 42

...

Same line changes in two different ways

Not same column

Here, merging requires knowledge about structure

3

Contributions

• Representation for changes

• Efficient Algorithm for structured diffing (and merging)

• Think of UNIX diff, over algebraic datatypes.

• Wrote it in Haskell, generically

• Evaluated against dataset from GitHub

• mined Lua repositories

4

Contributions

• Representation for changes

• Efficient Algorithm for structured diffing (and merging)

• Think of UNIX diff, over algebraic datatypes.

• Wrote it in Haskell, generically

• Evaluated against dataset from GitHub

• mined Lua repositories

4

Contributions

• Representation for changes

• Efficient Algorithm for structured diffing (and merging)

• Think of UNIX diff, over algebraic datatypes.

• Wrote it in Haskell, generically

• Evaluated against dataset from GitHub

• mined Lua repositories

4

Contributions

• Representation for changes

• Efficient Algorithm for structured diffing (and merging)

• Think of UNIX diff, over algebraic datatypes.

• Wrote it in Haskell, generically

• Evaluated against dataset from GitHub

• mined Lua repositories

4

Contributions

• Representation for changes

• Efficient Algorithm for structured diffing (and merging)

• Think of UNIX diff, over algebraic datatypes.

• Wrote it in Haskell, generically

• Evaluated against dataset from GitHub

• mined Lua repositories

4

Line-by-Line Differencing

5

The UNIX diff

Compares files line-by-line, outputs an edit script.

function tap.packet(pinfo,tvb,ip)

local src = tostring(ip.ip_src)

local dmp = "some/file.log"

function tap.packet(pinfo,tvb,ip)

local src = tostring(ip.ip_src)

local dmp = "some/other/file.log"

UNIX diff outputs:

@@ -3,1 , +3,1 @@

- local dmp = "some/file.log"

+ local dmp = "some/other/file.log"

6

The UNIX diff

Compares files line-by-line, outputs an edit script.

function tap.packet(pinfo,tvb,ip)

local src = tostring(ip.ip_src)

local dmp = "some/file.log"

function tap.packet(pinfo,tvb,ip)

local src = tostring(ip.ip_src)

local dmp = "some/other/file.log"

UNIX diff outputs:

@@ -3,1 , +3,1 @@

- local dmp = "some/file.log"

+ local dmp = "some/other/file.log"

6

The UNIX diff: In a Nutshell

Encodes changes as an Edit Script

data EOp = Ins String | Del | Cpy

type EditScript = [EOp]

Example,

@@ -3,1 , +3,1 @@

- local dmp = "some/file.log"

+ local dmp = "some/other/file.log"

[Cpy , Cpy , Del , Ins "local dmp ..."]

Computes changes by enumeration.

diff :: [String] -> [String] -> Patch

diff s d = head $ sortBy mostCopies $ enumerate_all s d

7

The UNIX diff: In a Nutshell

Encodes changes as an Edit Script

data EOp = Ins String | Del | Cpy

type EditScript = [EOp]

Example,

@@ -3,1 , +3,1 @@

- local dmp = "some/file.log"

+ local dmp = "some/other/file.log"

[Cpy , Cpy , Del , Ins "local dmp ..."]

Computes changes by enumeration.

diff :: [String] -> [String] -> Patch

diff s d = head $ sortBy mostCopies $ enumerate_all s d

7

The UNIX diff: In a Nutshell

Encodes changes as an Edit Script

data EOp = Ins String | Del | Cpy

type EditScript = [EOp]

Example,

@@ -3,1 , +3,1 @@

- local dmp = "some/file.log"

+ local dmp = "some/other/file.log"

[Cpy , Cpy , Del , Ins "local dmp ..."]

Computes changes by enumeration.

diff :: [String] -> [String] -> Patch

diff s d = head $ sortBy mostCopies $ enumerate_all s d

7

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff s d) s == Just d

UNIX diff works for [String].

8

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff s d) s == Just d

UNIX diff works for [String].

8

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff s d) s == Just d

UNIX diff works for [String].

8

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff s d) s == Just d

UNIX diff works for [String].

8

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff s d) s == Just d

UNIX diff works for [String].

8

The UNIX diff Generalized: Edit Scripts

Modify Edit Scripts

data EOp = Ins TreeConstructor | Del | Cpy

Bin

T U

T7→ src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

9

The UNIX diff Generalized: Edit Scripts

Modify Edit Scripts

data EOp = Ins TreeConstructor | Del | Cpy

Bin

T U

T7→ src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

9

The UNIX diff Generalized: Edit Scripts

Modify Edit Scripts

data EOp = Ins TreeConstructor | Del | Cpy

Bin

T U

T7→

src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

9

The UNIX diff Generalized: Edit Scripts

Modify Edit Scripts

data EOp = Ins TreeConstructor | Del | Cpy

Bin

T U

T7→ src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

9

The UNIX diff Generalized: Edit Scripts

Modify Edit Scripts

data EOp = Ins TreeConstructor | Del | Cpy

Bin

T U

T7→ src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

9

Edit Scripts: The Problem of Ambuiguity

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Edit Script with the most copies is not unique!

Counting copies is reminiscent of longest common subsequence.

10

Edit Scripts: The Problem of Ambuiguity

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Edit Script with the most copies is not unique!

Counting copies is reminiscent of longest common subsequence.

10

Edit Scripts: The Problem of Ambuiguity

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T]

Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Edit Script with the most copies is not unique!

Counting copies is reminiscent of longest common subsequence.

10

Edit Scripts: The Problem of Ambuiguity

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Edit Script with the most copies is not unique!

Counting copies is reminiscent of longest common subsequence.

10

Edit Scripts: The Problem of Ambuiguity

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Edit Script with the most copies is not unique!

Counting copies is reminiscent of longest common subsequence.

10

Edit Scripts: The Problem of Ambuiguity

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Edit Script with the most copies is not unique!

Counting copies is reminiscent of longest common subsequence.

10

Edit Scripts: The Problem of Ambuiguity

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Edit Script with the most copies is not unique!

Counting copies is reminiscent of longest common subsequence.

10

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations generalize specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

11

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations generalize specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

11

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations generalize specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

11

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations generalize specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

11

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations generalize specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

11

New Structure for Changes

12

Changes

diff (Bin (Bin t u) t) (Tri t u x) =

BinC

BinC

0 1

0

TriC

0 1 x

7→

• Arbitrary duplications, contractions, permutations

• Can explore all copy opportunities

• Faster to compute

• Our diff s d runs in O(size s + size d)

13

Changes

diff (Bin (Bin t u) t) (Tri t u x) =

BinC

BinC

0 1

0

TriC

0 1 x

7→

• Arbitrary duplications, contractions, permutations

• Can explore all copy opportunities

• Faster to compute

• Our diff s d runs in O(size s + size d)

13

Changes

diff (Bin (Bin t u) t) (Tri t u x) =

BinC

BinC

0 1

0

TriC

0 1 x

7→

• Arbitrary duplications, contractions, permutations

• Can explore all copy opportunities

• Faster to compute

• Our diff s d runs in O(size s + size d)

13

Changes

Two contexts • deletion: matching

• insertion: instantiation

type Change = (TreeC MetaVar , TreeC MetaVar)

data Tree = Leaf

| Bin Tree Tree

| Tri Tree Tree Tree

Contexts are datatypes augmented with holes.

data TreeC h = LeafC

| BinC TreeC TreeC

| TriC TreeC TreeC TreeC

| Hole h

14

Changes

Two contexts • deletion: matching

• insertion: instantiation

type Change = (TreeC MetaVar , TreeC MetaVar)

data Tree = Leaf

| Bin Tree Tree

| Tri Tree Tree Tree

Contexts are datatypes augmented with holes.

data TreeC h = LeafC

| BinC TreeC TreeC

| TriC TreeC TreeC TreeC

| Hole h

14

Applying Changes

BinC

0 BinC

1 t

BinC

0 1

7→

Application function sketch:

\x -> case x of

Bin a (Bin b c) -> if c == t then Just (Bin a b) else Nothing

_ -> Nothing

15

Applying Changes

BinC

0 BinC

1 t

BinC

0 1

7→

Application function sketch:

\x -> case x of

Bin a (Bin b c) -> if c == t then Just (Bin a b) else Nothing

_ -> Nothing

15

Computing Changes

Can copy as much as possible

Computation of diff s d can be split:

Hard Identify the common subtrees in s and d

Easy Extract the context around the common subtrees

Consequence of definition of Change

Spec of the hard part:

wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

wcs s d = flip elemIndex (subtrees s `intersect` subtrees d)

Efficient wcs is akin to hash-consing. Runs in O(1).

16

Computing Changes

Can copy as much as possible

Computation of diff s d can be split:

Hard Identify the common subtrees in s and d

Easy Extract the context around the common subtrees

Consequence of definition of Change

Spec of the hard part:

wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

wcs s d = flip elemIndex (subtrees s `intersect` subtrees d)

Efficient wcs is akin to hash-consing. Runs in O(1).

16

Computing Changes

Can copy as much as possible

Computation of diff s d can be split:

Hard Identify the common subtrees in s and d

Easy Extract the context around the common subtrees

Consequence of definition of Change

Spec of the hard part:

wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

wcs s d = flip elemIndex (subtrees s `intersect` subtrees d)

Efficient wcs is akin to hash-consing. Runs in O(1).

16

Computing Changes

Can copy as much as possible

Computation of diff s d can be split:

Hard Identify the common subtrees in s and d

Easy Extract the context around the common subtrees

Consequence of definition of Change

Spec of the hard part:

wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

wcs s d = flip elemIndex (subtrees s `intersect` subtrees d)

Efficient wcs is akin to hash-consing. Runs in O(1).

16

Computing Changes

Can copy as much as possible

Computation of diff s d can be split:

Hard Identify the common subtrees in s and d

Easy Extract the context around the common subtrees

Consequence of definition of Change

Spec of the hard part:

wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

wcs s d = flip elemIndex (subtrees s `intersect` subtrees d)

Efficient wcs is akin to hash-consing. Runs in O(1).

16

Computing Changes

Can copy as much as possible

Computation of diff s d can be split:

Hard Identify the common subtrees in s and d

Easy Extract the context around the common subtrees

Consequence of definition of Change

Spec of the hard part:

wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

wcs s d = flip elemIndex (subtrees s `intersect` subtrees d)

Efficient wcs is akin to hash-consing. Runs in O(1).

16

Computing Changes

Can copy as much as possible

Computation of diff s d can be split:

Hard Identify the common subtrees in s and d

Easy Extract the context around the common subtrees

Consequence of definition of Change

Spec of the hard part:

wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

wcs s d = flip elemIndex (subtrees s `intersect` subtrees d)

Efficient wcs is akin to hash-consing. Runs in O(1).

16

Computing Changes: The Easy Part

Extracting the context:

extract :: (Tree -> Maybe MetaVar) -> Tree -> TreeC

extract f x = maybe (extract' x) Hole $ f x

where

extract' (Bin a b) = BinC (extract f a) (extract f b)

...

Finally, with wcs s d as an oracle

diff :: Tree -> Tree -> Change MetaVar

diff s d = let o = wcs s d

in (extract o s , extract o d)

Since wcs s d is efficient, so is diff s d

17

Computing Changes: The Easy Part

Extracting the context:

extract :: (Tree -> Maybe MetaVar) -> Tree -> TreeC

extract f x = maybe (extract' x) Hole $ f x

where

extract' (Bin a b) = BinC (extract f a) (extract f b)

...

Finally, with wcs s d as an oracle

diff :: Tree -> Tree -> Change MetaVar

diff s d = let o = wcs s d

in (extract o s , extract o d)

Since wcs s d is efficient, so is diff s d

17

Computing Changes: The Easy Part

Extracting the context:

extract :: (Tree -> Maybe MetaVar) -> Tree -> TreeC

extract f x = maybe (extract' x) Hole $ f x

where

extract' (Bin a b) = BinC (extract f a) (extract f b)

...

Finally, with wcs s d as an oracle

diff :: Tree -> Tree -> Change MetaVar

diff s d = let o = wcs s d

in (extract o s , extract o d)

Since wcs s d is efficient, so is diff s d

17

Experiments

18

Computing Changes: But how fast?

Diffed files from ≈1200 commits from top Lua repos

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2500 5000 7500 10000

tim
e

(s
)

n + m

0

1

2

3

4

5

6

7

0×100 1×105 2×105 3×105 4×105

tim
e

(s
)

n + m

19

Computing Changes: But how fast?

Diffed files from ≈1200 commits from top Lua repos

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2500 5000 7500 10000

tim
e

(s
)

n + m

0

1

2

3

4

5

6

7

0×100 1×105 2×105 3×105 4×105

tim
e

(s
)

n + m

19

Computing Changes: But how fast?

Diffed files from ≈1200 commits from top Lua repos

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2500 5000 7500 10000

tim
e

(s
)

n + m

0

1

2

3

4

5

6

7

0×100 1×105 2×105 3×105 4×105

tim
e

(s
)

n + m

19

Merging Changes

merge :: Change -> Change -> Either Conflict Change

merge p q = if p `disjoint` q then p else Conflict

s
p

��~~
~~
~~
~

q

��@
@@

@@
@@

d1

q
��@

@@
@@

@@
@ d2

p
��~~
~~
~~
~~

r

11% of all mined merge commits could be automatically merged

20

Merging Changes

merge :: Change -> Change -> Either Conflict Change

merge p q = if p `disjoint` q then p else Conflict

s
p

��~~
~~
~~
~

q

��@
@@

@@
@@

d1

q
��@

@@
@@

@@
@ d2

p
��~~
~~
~~
~~

r

11% of all mined merge commits could be automatically merged

20

Merging Changes

merge :: Change -> Change -> Either Conflict Change

merge p q = if p `disjoint` q then p else Conflict

s
p

��~~
~~
~~
~

q

��@
@@

@@
@@

d1

q
��@

@@
@@

@@
@ d2

p
��~~
~~
~~
~~

r

11% of all mined merge commits could be automatically merged

20

Merging Changes

merge :: Change -> Change -> Either Conflict Change

merge p q = if p `disjoint` q then p else Conflict

s
p

��~~
~~
~~
~

q

��@
@@

@@
@@

d1

q
��@

@@
@@

@@
@ d2

p
��~~
~~
~~
~~

r

11% of all mined merge commits could be automatically merged

20

Open Questions

• How to reason over new change repr?

• Where do we stand with metatheory?

• Can’t copy bits inside a tree. Is this a problem?

• …

21

Open Questions

• How to reason over new change repr?

• Where do we stand with metatheory?

• Can’t copy bits inside a tree. Is this a problem?

• …

21

Open Questions

• How to reason over new change repr?

• Where do we stand with metatheory?

• Can’t copy bits inside a tree. Is this a problem?

• …

21

Open Questions

• How to reason over new change repr?

• Where do we stand with metatheory?

• Can’t copy bits inside a tree. Is this a problem?

• …

21

Summary

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm than ES based tree-diff

• Overall:

• Fast and generic algorithm

• Encouraging empirical evidence

22

Summary

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm than ES based tree-diff

• Overall:

• Fast and generic algorithm

• Encouraging empirical evidence

22

Summary

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm than ES based tree-diff

• Overall:

• Fast and generic algorithm

• Encouraging empirical evidence

22

Summary

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm than ES based tree-diff

• Overall:

• Fast and generic algorithm

• Encouraging empirical evidence

22

Efficient Structural Differencing

Victor Cacciari Miraldo Wouter Swierstra

Utrecht University

23

	Why Structural Differencing?
	Line-by-Line Differencing
	New Structure for Changes
	Experiments

