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Context and Motivation

data Exp :: ∗ → ∗where
Val :: Int → Exp Int
Add :: Exp Int → Exp Int → Exp Int
Eq :: Exp Int → Exp Int → Exp Bool
. . .

deriving instance (Serialize a) ⇒ Serialize (Exp a)

We would like this feature!

Implementing it in a general fashion requires some generic
programming over GADTs and arbitrarily kinded types.
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Context and Motivation

▶ GHC’s modern extensions allow for more expressive generic
programming.

▶ Inability to currently handle arbitrarily kinded datatypes.

▶ GADTs are becomming more common: deriving clauses
would be handy.
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Representing Datatypes (generics-sop)

Haskell datatypes come in sums-of-products shape:

data Tree a = Leaf | Bin a (Tree a) (Tree a)

Our codes will follow that structure:

type family Code (x :: ∗) :: ′[′[∗]]
type instance Code (Tree a) = ′[′[], ′[a, Tree a, Tree a]]

Given a map from ′[′[∗]] into ∗, call it Rep, package:

class Generic a where
from :: a → Rep (Code a)
to :: Rep (Code a) → a
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N-ary Sums and Products

NS p [x1 , . . . , xn ] ≈ Either (p x1 ) (Either . . . (p xn))
NP p [x1 , . . . , xn ] ≈ (p x1 , . . . , p xn)

data NS :: (k → ∗) → [k] → ∗ where
Here :: f x → NS f (x ′: xs)
There :: NS f xs → NS f (x ′: xs)

data NP :: (k → ∗) → [k] → ∗ where
Nil :: NP f ′[]
Cons :: f x → NP f xs → NP f (x ′: xs)
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Interpreting Codes (generics-sop)

data I x = I x

type Rep (c :: ′[′[∗]]) = NS (NP I ) c

Recall the Tree example:

type instance Code (Tree a) = ′[′[], ′[a, Tree a, Tree a]]
leaf :: Rep (Code (Tree a))
leaf = Here Nil
bin :: a → Tree a → Tree a → Rep (Code (Tree a))
bin e l r = There (Here (Cons e (Cons l (Cons r Nil))))
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Writing Generic Functions

Package it in a class

class Size a where
size :: a → Int

Then write the generic infrastructure:

gsize :: (Generic x, All2 Size (Code x))
⇒ x → Int

gsize = goS ◦ from
where

goS (Here x) = goP x
goS (There x) = goS x
goP Nil = 0
goP (Cons x xs) = size x + goP xs
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Generics of All Kinds

▶ So far, only handle types of kind ∗ with no parameters.

▶ Consequence of little structure on Codes.

▶ Solution: Augment the language of codes!

type DataType (ζ :: Kind) = ′[′[Atom ζ (∗)]]

▶ Atom is the applicative fragment of the λ-calculus with de
Bruijn indices.
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Generics of All Kinds

data Atom (ζ :: Kind) (k :: Kind) :: (∗) where
Var :: TyVar ζ k → Atom ζ k
Kon :: k → Atom ζ k
(:@:) :: Atom ζ (l → k) → Atom ζ l → Atom ζ k

data TyVar (ζ :: Kind) (k :: Kind) :: (∗) where
VZ :: TyVar (x → xs) x
VS :: TyVar xs k → TyVar (x → xs) k
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Generics of All Kinds

data Atom (ζ :: Kind) (k :: Kind) :: (∗) where
Var :: TyVar ζ k → Atom ζ k
Kon :: k → Atom ζ k
(:@:) :: Atom ζ (l → k) → Atom ζ l → Atom ζ k

Going back to our Tree example:

data Tree a = Leaf | Bin a (Tree a) (Tree a)

type V0 = Var VZ
type TreeCode

= ′[′[], ′[V0 , Kon Tree :@: V0 , Kon Tree :@: V0 ]]
:: ′[′[Atom (∗ → ∗) ∗]]
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Interpreting Atoms

Interpreting atoms needs environment.

data Γ (ζ :: Kind) where
ϵ :: Γ (∗)
(:&:) :: k → Γ ks → Γ (k → ks)
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Interpreting Atoms

Interpreting atoms needs environment.

data Γ (ζ :: Kind) where
ϵ :: Γ (∗)
(:&:) :: k → Γ ks → Γ (k → ks)

For example,

Int :&: Maybe :&: Char :&: ϵ

Is a well-formed enviroment of kind

Γ (∗ → (∗ → ∗) → ∗ → ∗)
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Interpreting Atoms

Interpreting atoms needs environment.

data Γ (ζ :: Kind) where
ϵ :: Γ (∗)
(:&:) :: k → Γ ks → Γ (k → ks)

type family Ty ζ (tys :: Γ ζ) (t :: Atom ζ k) :: k where
Ty (k → ks) (t :&: ts) (Var VZ ) = t
Ty (k → ks) (t :&: ts) (Var (VS v)) = Ty ks ts (Var v)
Ty ζ ts (Kon t) = t
Ty ζ ts (f :@: x) = (Ty ζ ts f ) (Ty ζ ts x)
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Interpreting Codes

We are now ready to map a code, of kind DataType ζ, into ∗.

First, package Ty into a GADT:

data NA (ζ :: Kind) :: Γ ζ → Atom ζ (∗) → ∗ where
T :: ∀ ζ t a . Ty ζ a t → NA ζ a t

Then, assemble NS , NP and NA:

type Rep (ζ :: Kind) (c :: DataType ζ) (a :: Γ ζ)
= NS (NP (NA ζ a)) c
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Approaching a Unified API

Usually, GP libraries provide a class:

class Generic f where
type Code f :: CodeKind
from :: f → Rep (Code f )
to :: Rep (Code f )

In our case, though, the number of arguments to f depend on
it’s kind!

from :: f → Rep (∗) (Code f ) ϵ
from :: f x → Rep (∗) (Code f ) (x :&: ϵ)
from :: f x y → Rep (∗) (Code f ) (x :&: y :&: ϵ)
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Approaching a Unified API

Write a GADT:

data ApplyT ζ (f :: k) (α :: Γ ζ) :: ∗ where
A0 :: f → ApplyT (∗) f ϵ
AS :: ApplyT ks (f t) ts → ApplyT (k → ks) f (t :&: ts)

Which allows us to unify the interface:

from :: ApplyT ζ f a → Rep ζ (Code f ) a
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Wait?! type-in-type?

▶ We require -XTypeInType to type check our code because
we need to promote GADTs and work with kinds as types.

▶ We do not require the ∗:∗ axiom

▶ We provide an Agda model of our approach to prove so.
Basic types live in Set0 , our codes inhabit Set1 and the
interpretations inhabit Set2 .
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Representing Constraints

With small modifications, we can handle constraints.

Add one layer on top of Atom:

data Field (ζ :: Kind) where
Explicit :: Atom ζ (∗) → Field ζ
Implicit :: Atom ζ Constraint → Field ζ

type DataType ζ = ′[′[Field ζ]]

Adapt the interpretation of Atom to work on top of Field:

data NA (ζ :: Kind) :: Γ ζ → Field ζ → ∗ where
E :: ∀ ζ t a . Ty ζ a t → NA ζ a (Explicit t)
I :: ∀ ζ t a . Ty ζ a t ⇒ NA ζ a (Implicit t)
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Example: Representing a GADT

data Expr :: ∗ → ∗ where
Lit :: a → Expr a
IsZero :: Expr Int → Expr Bool
If :: Expr Bool → Expr a → Expr a → Expr a

type CodeExpr
= ′[ ′[ Explicit V0 ]

, ′[ Implicit (Kon (∼) :@: V0 :@: Kon Bool)
, Explicit (Kon Expr :@: Kon Int) ]

, . . .
]
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Generic GADTs: Extensions Limitations

▶ On our paper we discuss how to handle existential types.

The resulting interface is not user-friendly and make the
writing of generic combinators cumbersome.

▶ Existential kinds pose a problem on the other hand. We
can’t represent telescopes like:

data Problem :: k → ∗ where
Constructor :: ∀ k (a :: k) . X a → Problem a
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Arity-generic fmap

We are able to generalize Functor and BiFunctor to NFunctor .

That is, let f be of kind ∗ → ∗ → . . . → ∗, we can then write:

fmapN :: (a1 → b1 )
→ . . .
→ (an → bn)
→ f a1 . . . an
→ f b1 . . . bn
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Discussion, Future and Related Work

▶ R. Scott “Generalized Abstract GHC.Generics” paper at
HIW, last Sunday.

▶ We are able to represent a reasonable amount of GADTs
generically.

▶ Our approach also extend to mutually recursive types as
long as we do not bring in explicit fixpoints.

▶ Fork generics-mrsop and package these ideas into a
usable library.
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