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Abstract
Datatype-generic programming is a widely used technique to
define functions that work regularly over a class of datatypes.
Examples include deriving serialization of data, equality or
even functoriality. The state-of-the-art of generic program-
ming still lacks handling GADTs, multiple type variables, and
some other features. This paper exploits modern GHC exten-
sions, including TypeInType, to handle arbitrary number of
type variables, constraints, and existentials. We also provide
an Agda model of our construction that does not require
Russel’s paradox, proving the construction is consistent.

CCS Concepts • Software and its engineering→ Func-
tional languages; Data types and structures;
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1 Introduction
(Datatype)-generic programming is a technique to define
functions by induction over the structure of a datatype.
Simpler mechanisms, such as the deriving clause, have
been present in Haskell for a long time [19], although re-
stricted to a few generic operation such as equality. Over
the years, many different approaches have been described
to allow the definition of generic functions by the program-
mer (see [17, 26] for a comparison). Ultimately, GHC added
special support via the Data [13, 22] and Generic [15] classes.
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The built-in Generic uses a lightweight encoding. One
of its key design aspects is to not represent recursion ex-
plicitly, as opposed to regular [23], multirec [35], and
generic-mrsop [21]. Our approach is inspired by the same
lightweight philosophy, but we extend it much further, en-
abling the programmer to employ generic programming tech-
niques to much more expressive datatypes.
For instance, Generic only supports representing ground

types, that is, types of kind ∗. It does provide a second type-
class, Generic1, for type constructors of kind k → ∗, but
that is as far as it goes. Our techniques are able to represent
types of arbitrary kinds by using some of the more modern
features of the Haskell language.
Our work builds upon many recent extensions to the

Haskell language, which have been implemented in GHC.
The list includes datatype promotion, kind polymorphism [36],
the Constraint kind [4], and TypeInType [31, 32]. Regarding
the latter, we show that our construction does not require
the ∗ : ∗ axiom by attaching a model in Agda (Appendix A).
Nevertheless, using these recent additions we drastically
expand the amount of Haskell datatypes we can represent
generically compared to other approaches. Take for example
the following datatype for simple well-typed expressions:

data Expr :: ∗ → ∗ where
Lit :: a → Expr a
IsZ :: Expr Int → Expr Bool
If :: Expr Bool → Expr a → Expr a → Expr a

Internally, GHC enforces a specific type in a constructor –
as Bool in the constructor Eq above – by using equality con-
straints. Thus the previous declaration is internally trans-
lated to the following form:

data Expr :: ∗ → ∗ where
Lit :: a → Expr a
IsZ :: a ∼ Bool ⇒ Expr Int → Expr a
If :: Expr Bool → Expr a → Expr a → Expr a

Using the approach presented in this paper, this type is
encoded using a list of lists of atoms. The outer list represents
the choice of constructors, and the inner list represents the
fields of such constructors.
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type CodeExpr =
′[ ′[Explicit V0 ],
′[Implicit (Kon (∼) :@: V0 :@: Kon Bool),

Explicit (Kon Expr :@: Kon Int)],
′[Explicit (Kon Expr :@: Kon Bool),

Explicit (Kon Expr :@: V0),

Explicit (Kon Expr :@: V0)]]

The three constructors translate into three elements in the
outer list. Each of the inner lists contain a list of fields. The
type of each of their fields are represented using the applica-
tive fragment of λ-calculus. Constant types and type con-
structors are brought in via Kon, application is represented
by (:@:), and V0 , V1, . . . represent each of the type variables
of the datatype. For example, the constraint a ∼ Bool is rep-
resented as the application of the type constructor (∼) to the
first argument V0 and the constant Kon Bool. Our encoding
ensures that everything is well-kinded.
If a field represents a constraint in Haskell code, it is

marked as implicit in the code. This is the case for the equal-
ity a ∼ Bool above. All other fields are marked as explicit.

1.1 Contributions
The main contribution of this paper is to provide a single,
unified type class for generic programming, which supports
algebraic data types and type constructors of all kinds (Sec-
tion 4) by using a variant of the sum-of-products represen-
tation. Before delving into the most general framework, we
explore the required background in Section 2, and provide
a first extension of the sum-of-products style for type con-
structor with a single parameter in Section 3.

Since the introduction of GeneralisedAlgebraic Data Types
[34], GADTs for short, datatype constructors may have more
complicated shapes than a mere list of fields:

• Each constructor may require one or more constraints
to be satisfied by the types of their fields. The Expr
datatype defined above is a prime example of this fea-
ture. In Section 5 we explore how to extend our base
framework to account for these constraints.

• Constructors may introduce new type variables. These
are called existentials, since once you pattern match
you know that a type has been used, but not exactly
which one. The support for existentials is discussed in
Section 6.

In Appendix B we address how one could encode explicit
recursion within our approach.

2 Preliminaries
Let us take a step back and take a tour of generic program-
ming techniques. We will build up in complexity gradually,
ultimately leading to our approach. We focus on the Generic
line of work, whose main characteristic is the use of type-
level information to represent the shape of datatypes.

Each generic programming library provides different build-
ing blocks for the representations. For example, Generic uses
the following set of functors and combinators:1

data V1 p -- empty
data U1 p = U1 -- unit
data K1 c p = K1 c -- constant
data (f :+ : g) p = L1 (f p) | R1 (g p) -- sum
data (f :∗ : g) p = (f p) :∗ : (g p) -- product

By combining these blocks we can describe the structure of
any algebraic datatype. We encode the choice of constructors
by sums, and the combination of fields of a constructor by
products, or by the unit functor if there are none. In turn,
each field is represented by a constant functor. To make
things more concrete, here is a definition for binary trees:

data Tree a = Leaf | Node (Tree a) a (Tree a)

The shape of this datatype is described as follows:
U1 :+ : (K1 (Tree a) :∗ : K1 a :∗ : K1 (Tree a))

The type above is the representation of Tree a. Note that this
representation refers to the type Tree a itself. Hence, we say
that recursion is encoded implicitly here. Other approaches
to generic programming use a specific combinator for mark-
ing recursive positions instead [23, 35].

The combinators presented above are enough to describe
the structure of a datatype, but not metadata such as the
names of the type and constructor. Generic includes an ad-
ditional functor M1 for that purpose, but we omit further
discussion for the sake of conciseness.

In order to use generic operations, wemust tie each datatype
with its representation. This is done via theGeneric type class.
In addition, we ought to witness the isomorphism at the term
level via a pair of functions to and from.

class Generic a where
type Rep a :: ∗ → ∗

from :: a → Rep a p
to :: Rep a p → a

Fortunately, we do not have to write Generic instances by
hand. GHC provides an extension to the deriving mecha-
nism to create these instances. In fact, all generic program-
ming libraries automate this step, making use of metapro-
gramming facilities such as Template Haskell [29]. In many
cases, generic descriptions can also be derived from the
compiler-generated one [18].

2.1 Generic operations
In order to define an operation generically, we create two
dedicated type classes, one for ground types and one for

1In the actual library, K1 has an additional type parameter i, which was
used to distinguish recursive positions from non-recursive ones. In latest
versions this distinction has been removed and i is always set to R, but the
type parameter remains for backwards compatibility.
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type constructors. Take the size function, which counts the
number of constructors.

class Size a where
size :: a → Integer

class GSize f where
gsize :: f p → Integer

All we have to do is to write instances of the second class
for each of the building blocks of datatypes. The type class
mechanism is how we reflect the type level structure into a
term level implementation.

instance (GSize f ,GSize g) ⇒ GSize (f :∗ : g) where
gsize (f :∗ : g) = gsize f + gsize g

instance (GSize f ,GSize g) ⇒ GSize (f :+ : g) where
gsize (L1 f ) = gsize f
gsize (R1 g) = gsize g

instance (Size c) ⇒ GSize (K1 c) where
gsize (K1 x) = size x

Note how the instance of constantsK1 points back to the type
class for ground types, Size. We need one such instance for
each datatype; but now we can reuse the generic implemen-
tation if we first transform the value into its representation.

instance Size Int where
size n = 1

instance Size (Tree a) where
size t = gsize (from t)

By using the default keyword [15] available in GHC, the
implementation of size in terms of gsize can be completely
automated. In that case, only an empty instance declaration
for Size is required. The recent deriving via proposal [3]
provides another way to automatize the creation of such
instances.

The definition of size is very simple, other generic opera-
tions such as show or parse need to access the metadata and
keep additional information around.

2.2 Sums of Products
The landscape of type-level programming in GHC changed
radically after the introduction of datatype promotion [36],
which is used by the generics-sop library [6] to guarantee
the sum-of-products invariants.

Briefly, by promoting a datatype you can use its construc-
tors as types, and the type being defined is promoted to a
kind. For example, we can use a promoted Boolean value to
encode whether a certain string has been validated or not.

newtype VString (v :: Bool) = VString String

validate :: VString False → VString True

In particular, generics-sopmakes heavy use of promoted
lists. Each datatype is described by a list of list of types, where
the outer level should be thought as the choice between

constructors, and each inner list represents the fields in that
constructor. This structure corresponds to that of algebraic
datatypes in Haskell, and it is called sum of products. We
refer to the list of list of types which describe a datatype as
the code of that datatype. For example, here is the code for
Tree a defined above:2

′[ ′[ ], ′[Tree a, a, Tree a]]

In contrast, the representation using Generic is not strong
enough to guarantee that shape; the compiler does not stop
us from writing:

U1 :∗ : (K1 Int :+ : Maybe)

that is, a product of sums instead of a sum of products. Fur-
thermore, it uses a functor Maybe which is not part of the
basic building blocks.

Unfortunately, a new problem arises: we cannot construct
terms of the code directly, we first need to turn it into a
ground type. The kind of the type level list is [[∗]] – where
∗ is the kind of ground types in Haskell – yet, we can only
write terms of kind ∗. The bridge between the two worlds is
given by the following two GADTs: NS, which interprets a
list of elements as a choice, and NP , which requires a value
for each element in the list, and thus encodes a product.

data NS :: (k → ∗) → [k ] → ∗ where
Here :: f k → NS f (k ′ : ks)
There :: NS f ks → NS f (k ′ : ks)

data NP :: (k → ∗) → [k ] → ∗ where
Nil :: NP f ′[ ]

(:∗) :: f x → NP f xs → NP f (x ′ : xs)

Both NS and NP receive as first argument a type constructor
of kind k → ∗. Both NS and NP apply that constructor to
the elements of the list: to one of them in Here, and to all of
them in (:∗).
The most common combination of NS and NP is used to

obtain the ground type representing a certain code c:
type SOP c = NS (NP I ) c

The idea is that we choose one of the constructors in the
outer list by using NS, and then apply NP I to ask for one
value of every element for the chosen constructor. The argu-
ment to NP is the identity functor I defined as:

data I p = I p

As a result, we require for each field one value of exactly the
type declared in the inner list. As we shall see, the ability to
manipulate the inner lists is paramount to our approach.
Just like the built-in Generic, each datatype is tied to its

code by a type class. In the generics-sop this class is also
known as Generic, but we use a superscript to distinguish it.

2The quote sign serves to differentiate type level from term level when there
is a risk of confusion. For example, [ ] is the name of the list type constructor,
whereas ′[ ] is the promoted empty list.
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class Genericsop a where
type Code a :: [[∗]]
from :: a → SOP (Code a)
to :: SOP (Code a) → a

This approach to generic programming allows the defi-
nition of generic operations without resorting to the type
class mechanism. By pattern matching on the NS and NP
constructors we gain enough information about the shape
of the datatype. For example, here is the definition of the
generic size operation:

gsize :: (Genericsop a,All2 Size (Code a)) ⇒ a → Integer
gsize = goS ◦ from
where goS (Here x) = goP x

goS (There x) = goS x
goP Nil = 0
goP (x :∗ xs) = size x + goP xs

The only remarkable part of this implementation is the use of
the All2 type class to ensure that every type which appears
in a field of the code has a corresponding size operation.
We omit further details about All2 , the interested reader is
referred to de Vries and Löh [6].

3 Generic Type Constructors
If we want to write functions such as fmap, from Functor ,
generically, we need to have knowledge about which fields
of a type of kind ∗ → ∗ are, in fact, an occurence of its
type parameter. In this section we look into how this has
been done by GHC.Generics and how to translate this to the
generics-sop style.

3.1 Type constructors using Generic1

TheGeneric1 type class is the counterpart ofGeneric for types
with one parameter, such as Maybe or [ ]. The definition is
pretty similar, except that from1 and to1 take as argument an
instantiated version f a of the type constructor f . The same
instantiation is done in the generic representation.

class Generic1 f where
type Rep1 f :: ∗ → ∗

from1 :: f a → Rep f a
to1 :: Rep f a → f a

We now need to extend our set of building blocks, since
in the case of type constructors we have an additional pos-
sibility for the fields, namely referring to the type variable
a in f . Par1 is used to represent the case in which the type
variable appears “naked”, that is, direcly as a:

data Par1 p = Par1 p

Par1 is not enough to represent a type like Tree a, in which
a also appears as part of a larger type – in this case Tree a
again for the subtrees. We introduce another building block:

data Par1 p = Par1 p
data Rec1 f p = Rec1 (f p)

We can now give a representation of the Tree type construc-
tor. In contrast, before we had defined a family of represen-
tations for Tree a, regardless of the a.

U1 :+ : (Rec1 Tree :∗ : Par1 :∗ : Rec1 Tree)

Although type application is named Rec1, and it is used
when we have recursion in our type, is does not only model
recursion. In fact, every application of a type constructor to
the type variable has to be encoded by the means of Rec1,
even if this is not a recursive application.

Note that Rec1 is not expressive enough to represent arbi-
trary recursion. If wewant to represent non-regular datatypes,
such as Rose a below:
data Rose a = Fork a [Rose a]

we need some extra machinery in the form of functor com-
position. We omit discussion of these non-regular datatypes
in this section, but note that the framework in forecoming
sections does support this shape of recursion.
Defining generic operations for Generic1 is done as for

Generic; one just need to add additional instances for the new
Par1 and Rec1 functors. Here are the important pieces of the
generic fmap declaration, taken from the generic-deriving
package. The rest of the instances just apply gfmap recur-
sively in every position.

class GFunctor f where
gfmap :: (a → b) → f a → f b

instance GFunctor Par1 where
gfmap f (Par1 a) = Par1 (f a)

instance (Functor f ) ⇒ GFunctor (Rec1 f ) where
gfmap f (Rec1 a) = Rec1 (fmap f a)

Although Generic1 works well for one type parameter, the
general technique does not scale to more parameters. At the
very least, we would need new Par1 and Par2 types which
refer to each of the type variables.

data Par1 a b = Par1 a
data Par2 a b = Par2 b

By doing so, the kind of the representation can no longer
be ∗ → ∗, we need at least ∗ → ∗ → ∗ to accomodate the
two type parameter. Unfortunately, this means that none of
V1, U1, (:+ :), and (:∗ :) can be used, since they all create or
operate on types of kind ∗ → ∗. We could build a completely
different set of primitive building blocks for two-parameter
types, but the problem would repeat again once we consider
three parameters. We will address this issue in Section 4.

3.2 Type constructors in sum-of-products style
The key point to extend a generic framework to handle type
constructors is to introduce marks for those places where
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the type parameter ought to appear. In the case of Generic1,
it was only a matter of adding new Par1 and Rec1 types.
The approach taken by generics-sop is to describe a

datatype by a list of list of types. Ultimately, the elements of
the nested lists are ground types, of kind ∗. This precludes
us from using the same form of codes directly, since we
cannot add an indicators for variables or recursion. Instead,
we introduce atoms, which describe the choice we have for
each of our fields:

data Atom = Var | Rec (∗ → ∗) | Kon (∗)

A code is no longer represented by [[∗]], but rather [[Atom]].
The NS and NP types which interpret those codes are still
valid; the nested list structure is still there. But we also need
to interpret each of the atoms into a value of kind ∗. For that
we introduce yet another layer, which we call NA:

data NA :: ∗ → Atom → ∗ where
V :: a → NA a Var
R :: f a → NA a (Rec f )
K :: k → NA a (Kon k)

Each of the constructors in NA closely matches the definition
of Par1, Rec1, and K1 in the Generic1 framework. The code
for our running example, Tree, reads as follows:

′[ ′[ ], ′[Rec Tree,Var, Rec Tree ]]

We can now define the Genericsop1 type class which ties
each datatype to its code. We also define a SOP1 type syn-
onym for the nested application of the interpretation func-
tors NS, NP , and NA:
type SOP1 c a = NS (NP (NA a)) c

class Genericsop1 (f :: ∗ → ∗) where
type Code1 f :: [[Atom]]

from1 :: f a → SOP1 (Code1 f ) a
to1 :: SOP1 (Code1 f ) a → f a

Up to this point we have omitted the implementation of the
functions which witness the isomorphism between a regular
datatype and its generic representation. It is instructive to
consider how it looks for the case of Tree seen as a type
constructor:

instance Genericsop1 Tree where
. . .

from Leaf = Here Nil
from (Node l x r)
=There $ Here $ R l :∗ V x :∗ R r :∗ Nil

After a sequence ofThere andHere indicatingwhich construc-
tor we are working with, we find a (:∗)-separated list of fields,
finished by Nil. In each case we need to mark whether that
field arises from an application of a type constructor to the
parameter (with R), for an ocurrence of the type parameter
(with V ), or simply from a constant type (with K , not shown
in this example).

gfmap :: forall f a b .
(Genericsop1 f ,AllRec2 Functor (Code1 f ))

⇒ (a → b) → f a → f b
gfmap f = to ◦ goS ◦ from

where
goS :: AllRec2 Functor xs

⇒ NS (NP (NA a)) xs → NS (NP (NA b)) xs
goS (Here x) = Here (goP x)
goS (There x) =There (goS x)

goP :: AllRec Functor xs
⇒ NP (NA a) xs → NP (NA b) xs

goP Nil = Nil
goP (R x :∗ xs) = (R $ fmap f x) :∗ goP xs
goP (V x :∗ xs) = V (f x) :∗ goP xs
goP (K x :∗ xs) = K x :∗ goP xs

type family AllRec2 c xs :: Constraint where
AllRec2 c ′[ ] = ()

AllRec2 c (x ′ : xs) = (AllRec c x,AllRec2 c xs)

type family AllRec c xs :: Constraint where
AllRec c ′[ ] = ()

AllRec c (Rec x ′ : xs) = (c x,AllRec c xs)
AllRec c (x ′ : xs) = AllRec c xs

Figure 1. Generic fmap using Genericsop1

Armed with our new Genericsop1 , we can implement a
generic version of fmap, given in Figure 1. The code is a
bit more complex than gsize, though. The types involved in
goS, goP , and goA are too complex to be inferred, hence, we
must help the compiler by annotating the local declarations.
We cannot use the same type family All2 that we were

using, because we need to treat Rec positions differently from
the rest. The solution is to define a more specific AllRec2 type
family, which only applies the a constraint c only over those
positions. Unfortunately, we have not yet found a way to
implement AllRec2 in terms of All2 .

4 Generics of All Kinds
The extension of Genericsop to Genericsop1 was done in three
steps. First, we changed the language of codes from lists of
lists of types, to lists of lists of atoms. By doing so, we were
able to refer to type parameters via Var and encode recursion
via Rec. Next, we introduced an interpretation functor NA
for atoms. Finally, we defined the Genericsop1 type class to
tie each datatype to its code. In this section we follow the
same three steps, but this time we go further. The resulting
generic type-class supports types of arbitrary kinds.
The first step is representing each of the types of the

fields, that is, estabilishing our new language of atoms. In
Section 3 we discussed the problem of nested recursion, as
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type Kind = (∗)

data TyVar (ζ :: Kind) (k :: Kind) :: (∗) where
VZ :: TyVar (x → xs) x
VS :: TyVar xs k → TyVar (x → xs) k

data Atom (ζ :: Kind) (k :: Kind) :: (∗) where
Var :: TyVar ζ k → Atom ζ k
Kon :: k → Atom ζ k
(:@:) :: Atom ζ (ℓ → k) → Atom ζ ℓ → Atom ζ k

Figure 2. Definition of Atom

in Rose. Here this problem is magnified; for example, in the
following datatype of kind ∗ → (∗ → ∗) → ∗ → ∗:
newtype ReaderT r m a = Reader (r → m a)

the second type variable is applied to the third one. We
cannot foresee all possible combinations of recursion and
application, and thus extending the possibilities of the Rec
constructor from Atom is a dead end.
Looking at the Haskell Report [19, section 4.1.2], we see

that a type follows closely the applicative fragment of the
λ-calculus: it is either a type variable, a type constructor, or
an application. We use well-known techniques to represent
the structure of these types as terms:

1. We use de Bruijn indices to refer to variables.
2. We prevent ill-kinded types such as Kon Int :@: Var Z

by keeping track of the kind of the type being described
as an index [2].

In Figure 2 we define two GADTs, TyVar and Atom, to repre-
sent types. For the sake of clarity, we also define a synonym
Kind for (∗), which we used whenever the instantiation of
a type argument represents a kind as opposed to a regular
type. Both TyVar and Atom receive two Kind-indices: the
first one ζ represents the kind of the datatype we are de-
scribing, and the second one k gives the kind of the type
represented by the Atom itself. The latter index is the one
preventing ill-kinded expressions such as Kon Int :@: Var Z .

The TyVar represents a de Bruijn index into the datatype
ζ . We represent this index as a Peano numeral using VZ and
VS, and ensure that references are never out of bounds. For
simplicity, we also introduce some synonyms in order to
make the descriptions of types in the rest of the paper a bit
more concise:

type V0 = Var VZ
type V1 = Var (VS VZ)
type V2 = Var (VS (VS VZ))

A datatype of kind ζ is now encoded as a list of list of the
atoms defined above, given that they form a type of kind ∗.
We define a type synonym DataType to refer to such lists:

type DataType ζ = [[Atom ζ (∗)]]

At this point we need the Atom datatype to be promoted,
in order to use it in the list defining the code. Since Atom is a
GADT, we are required to enable the TypeInType extension
to promote it. However, we are not using the ∗ : ∗ judgement
in our construction, we discuss this matter in Section 4.3.
As an example, here are the codes corresponding to [ ],

Either , and Rose. The fact that Either has two type parameter
can be observed by the usage of both V0 and V1. The non-
regular recursion pattern in Rose is translated to iterated
uses of the application (:@:).
type ListCode = ′[ ′[ ], ′[V0,Kon [ ] :@: V0 ]]

type EitherCode = ′[ ′[V0 ],
′[V1 ]]

type RoseCode = ′[ ′[V0,Kon [ ] :@: (Kon Rose :@: V0)]]

InterpretingAtoms. In order to interpret this new language,
none of the previously defined NS and NP require any mod-
ifications. On the other hand, the interpretation of atoms
requires some type engineering. Recall the definition of NA
given in Section 3:

data NA :: ∗ → Atom → ∗ where
V :: a → NA a Var
. . .

The first argument of kind ∗ represents the type of the ar-
gument of the functor we are interpreting. In the current
setting, we might have an arbitray number of arguments, and
these might be of arbitrary kinds other than ∗. This notion
is not new: to interpret a term possibly containing variables
we need a context — commonly represented by the Greek
letter Γ – which assigns a type to each of the variables. Other
than the special shape of the index, the datatype for contexts
looks very much like an heterogeneous list.

data Γ (ζ :: Kind) where
ϵ :: Γ (∗)

(:&:) :: k → Γ ks → Γ (k → ks)

For example, Int :&: Maybe :&: Char :&: ϵ is a well-formed
context of kind Γ (∗ → (∗ → ∗) → ∗ → ∗).

With the introduction of contexts, we canwrite a definitive
version of NA. In contrast to the previous iteration, we do
not have a different constructor for each possible value of
Atom. It is not possible to build interpretations for Atom
in a compositional way: for example, it is not possible to
define the interpretation Kon [ ] :@: Kon Int by composing
interpretations of Kon [ ] and Kon Int because the notion of
a value of something of a kind different from ∗, like [ ], does
not make sense in Haskell. Instead, we define a type family
Ty which computes the type of a field given a context.

type family Ty ζ (α :: Γ ζ ) (t :: Atom ζ k) :: k where
Ty (k → ks) (t :&: α) (Var VZ) = t
Ty (k → ks) (t :&: α) (Var (VS v)) = Ty ks α (Var v)
Ty ζ α (Kon t) = t
Ty ζ α (f :@: x) = (Ty ζ α f ) (Ty ζ α x)
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In preparation for the upcoming constructions, we intro-
duce the type variables for the T constructor explicitly. In
particular, this is required to use visible type application [8].
The code uses record syntax to generate an eliminator unT
for the only field in T .3

data NA (ζ :: Kind) :: Γ ζ → Atom ζ (∗) → ∗ where
T :: forall ζ t α . {unT :: Ty ζ α t } → NA ζ α t

These new parameters to NA appear also in the new SOP⋆
type, which interpets codes of the new shape:

type SOP⋆ (ζ :: Kind) (c :: DataType ζ ) (α :: Γ ζ )

= NS (NP (NA ζ α)) c

A unified Genericsop⋆ . The definition of the generic repre-
sentation of a certain datatype is not comprised only of its
code, the two isomorphisms from and to are also required.
In our case, however, it seems like there is a family of such
conversion functions:

from :: f → SOP⋆ (∗) (Code f ) ϵ
from1 :: f a → SOP⋆ (k1 → ∗) (Code f ) (a :&: ϵ)
from2 :: f a b → SOP⋆ (k1 → k2 → ∗) (Code f ) (a :&: b :&: ϵ)
-- and so on

The difficulty arises on the first argument, since f is applied
to a different number of variables in each case. Hence, we
have to describe this situation as f being applied to a context
whose length varies.

from :: Apply f ϵ → SOP⋆ . . .
from1 :: Apply f (a :&: ϵ) → SOP⋆ . . .
from2 :: Apply f (a :&: b :&: ϵ) → SOP⋆ . . .
-- and so on

Where Apply is defined as a type family. In order to help the
compiler in forecoming developments, we also include the
kind of the context as an explicit argument to this family.

type family Apply ζ (f :: ζ ) (α :: Γ ζ ) :: (∗) where
Apply (∗) f ϵ = f
Apply (k → ks) f (t :&: τ ) = Apply ks (f t) τ

This is not yet sufficient to type either the from or to func-
tions. The complete declarations can be found in Figure 3,
together with an example instance. For pedagogical purposes,
let us start from a naive type signature for to and build it up
to the real signature, one piece at a time. We start with:

to :: SOP⋆ ζ (Code f ) α → Apply ζ f α

Here the type variable f appears only as an argument of
type families: Apply and Code. None of the type families are
injective, which means that the instantiation of f cannot be
inferred in its usage sites. In fact, if we have Either a b as a
result, there are three different calls to Apply which would
give the same result:

3Not to be confused with Agda and Idris’ syntax for implicit parameters.

class Genericsop⋆ ζ (f :: ζ ) where
type Code f :: DataType ζ
from :: ApplyT ζ f α → SOP⋆ ζ (Code f ) α
to :: SForΓ ζ α

⇒ SOP⋆ ζ (Code f ) α → ApplyT ζ f α

data ApplyT ζ (f :: k) (α :: Γ ζ ) :: ∗ where
A0 :: {unA0 :: f } → ApplyT (∗) f ϵ

A+ :: {unA+ :: ApplyT ks (f t) τ }
→ ApplyT (k → ks) f (t :&: τ )

data SΓ (ζ :: Kind) (α :: Γ ζ ) where
Sϵ :: SΓ (∗) ϵ

S& :: SΓ ks α → SΓ (k → ks) (t :&: τ )
class SForΓ k (α :: Γ k) where

sΓ :: SΓ k τ

instance SForΓ (∗) ϵ where
sΓ = Sϵ

instance SForΓ ks τ ⇒ SForΓ (k → ks) (t :&: τ ) where
sΓ = S& sΓ

instance Genericsop⋆ (∗ → ∗) [ ] where
type Code [ ] = ′[ ′[ ], ′[V0,Kon [ ] :@: V0 ]]

from (A+ (A0 [ ])) = Here $ Nil
from (A+ (A0 (x:xs))) =There $ Here $ T x :∗ T xs :∗ Nil

to :: forall α . SForΓ (∗ → ∗) α

⇒ SOP⋆ (∗ → ∗) (Code [ ]) α → ApplyT (∗ → ∗) [ ] α

to sop = case sΓ@(∗ → ∗)@α of
S& Sϵ → case sop of

Here Nil → A+ $ A0 [ ]

There (Here (T x :∗ T xs :∗ Nil)) → A+ $ A0 $ x:xs

Figure 3. The Genericsop⋆ class and its instance for lists

Apply (∗ → ∗ → ∗) Either (a :&: b :&: ϵ)
Apply (∗ → ∗) (Either a) (b :&: ϵ)
Apply (∗) (Either a b) ϵ

Datatypes, on the other hand, are injective. Hence we lift
Apply to a GADT, ApplyT . This provides evidence of which
part of the type is the constructor f and which are the type
parameters.

Next, we need to inform the typechecker about the shape
of the context Γ ζ . Unfortunately Haskell cannot infer that
only from the kind ζ , even though this should be enough
in theory. We introduce singletons for contexts, SΓ , and an
accompanying type class SForΓ , which witnesses the one-
to-one correspondence between the singleton term and its
indexed context. In short, a singleton for τ is a datatype
indexed by that τ which accurately reflects the structure of
τ [7]. Thus, by pattern matching on the singleton, we gain
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gfmap :: forall f a b . (Genericsop⋆ (∗ → ∗) f ,
All2 FunctorAtom (Code f ))

⇒ (a → b) → f a → f b
gfmap f = unA0 ◦ unA+ ◦ to

◦ goS ◦ from ◦ A+ ◦ A0

where
goS :: All2 FunctorAtom xs

⇒ NS (NP (NA (∗ → ∗) (a :&: ϵ))) xs
→ NS (NP (NA (∗ → ∗) (b :&: ϵ))) xs

goS (Here x) = Here (goP x)
goS (There x) =There (goS x)

goP :: All FunctorAtom xs
⇒ NP (NA (∗ → ∗) (a :&: ϵ)) xs
→ NP (NA (∗ → ∗) (b :&: ϵ)) xs

goP Nil = Nil
goP (T x :∗ xs) = gfmapF f (T x) :∗ goP xs

class FunctorAtom (t :: Atom (∗ → ∗) (∗)) where
gfmapF :: (a → b) → NA (∗ → ∗) (a :&: ϵ) t

→ NA (∗ → ∗) (b :&: ϵ) t

instance FunctorAtom V0 where
gfmapF f (T x) = T (f x)

instance (Functor f , FunctorAtom x)
⇒ FunctorAtom (Kon f :@: x) where

gfmapF f (T x)
= T (fmap (unT ◦ gfmapF f ◦ T @_@x) x)

instance FunctorAtom (Kon t) where
gfmapF f (T x) = T x

Figure 4. Generic fmap using Genericsop⋆

information about τ itself. In this case, the information about
the shape of the context is reified.

4.1 Generic Functor
Just like Figure 1, we can also write a generic fmap for func-
tors in the GenericsNSOP universe, given in Figure 4. In fact,
the code in Figure 4, does not significantly differ from that of
Figure 1, wherewe only hadGenericsop1 at our hand. Themain
change is our treatment of atoms. In the case of Genericsop1 ,
we knew how to implement fmap for every possible shape of
field. However, the language of atoms in Genericsop⋆ is much
broader, and we cannot always write the desired implemen-
tation. In order to delineate which Atoms we can handle,
we introduce a FunctorAtom type class. The instances corre-
spond to three different scenarios:

• If the field mentions the type variable, then we apply
the function of type a → b to it.

• If the field has the form f a, where f is a functor and
a the type variable, we can apply the operation under

the functor f . This idea generalizes to fields of the form
f1 (. . . (fn a)), giving rise to a recursive instance.

• Finally, if the field does not mention the variable, Kon t,
we just keep it unchanged.

In the second instancewemake use of a partial type signature
@_ [33]. That way we can ask the compiler to infer the kind
which ought to be passed to T from the surrounding context.
In this case it can be readily obtained from the following @x
type application.
Note that this use of type classes in the definition of

generic fmap is quite different from the usage in Section 2.1.
There the instances describe how to handle sums and prod-
ucts, which we do simply by recursion on the structure of
NS and NP . In our case FunctorAtom describes which shapes
of atoms can appear as fields of a datatype which supports
the Functor operations. We need such a restriction because
the universe of types we can describe is very wide, and in
many scenarios only a subset of those can be handled.

Another important difference from the Genericsop1 version
is that we need to manually wrap and unwrap ApplyT con-
structors A0 and A+. Note that the user of the generic oper-
ation is oblivious to these fact, they can use the operation
directly, as the following example from the interpreter shows:
> gfmap (+1) [1,2,3]
[2,3,4]

Arity-generic fmap. The construction in this section can be
generalized to work on type constructors of every kind of
the form ∗ → . . . → ∗ → ∗, that is, taking only ground
types as type arguments. Using our framework, we autom-
atize the instantiation of the following type class KFunctor ,
which generalizes Functor and Bifunctor to any kind of the
aforementioned shape

class KFunctor ζ (f :: ζ ) where
kmap :: SForΓ ζ β ⇒ Mappings α β

→ ApplyT ζ f α → ApplyT ζ f β

The fmap method in Functor takes one single function a → b
as argument, since there is only one type variable to update.
The bimap in Bifunctor takes two functions, one per argu-
ment. The following Mappings data type generalized this
idea for KFunctor , requiring one function per type variable.
data Mappings (α :: Γ ζ ) (β :: Γ ζ ) where

MNil :: Mappings ϵ ϵ
MCons :: (a → b) → Mappings α β

→ Mappings (a :&: α) (b :&: β)

Assuming the Genericsop⋆ instance for lists, one can imple-
ment the usual map function as follows:

map :: (a → b) → [a] → [b]
map f = unA0 ◦ unA+ ◦ kmap (MCons f MNil) ◦ A+ ◦ A0

Since we need to pass an ApplyT value to kmap, we need to
manually wrap and unwrap using A0 and A+. This process
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can be automated, though, and we explain how to do so in
the next section. The other detail to consider is that we need
to create a Mappings with the single function f , as [ ] only
takes one type argument.

The full implementation of kmap is given in Appendix C.
The version described also supports constraints in datatype
constructors as described in Section 5.

4.2 Unraveling Singletons
Although the type family Apply exposes a nicer interface to
the programmer, the introduction of the ApplyT datatype
was essential for the definition of Genericsop⋆ . Turns out we
can maintain that nice interface by wrapping or unwrapping
values using A0 and A+ automatically.

Going from ApplyT to Apply is trivial. This is expected,
as ApplyT is a refinement of the type family in which the
evidence is explicit.

unravel :: ApplyT k f α → Apply k f α

unravel (A0 x) = x
unravel (A+ x) = unravel x

For the converse direction, we find ourselves in the same
scenario as for the definition of to. In order to define the
function, we need to match on the shape of the context:
it the context is empty we wrap the value using A0 , and
otherwise we add one layer of A+. The solution is asking for
a singleton and inspecting that value instead.

ravel :: forall k f α . SForΓ k α

⇒ Apply k f α → ApplyT k f α

ravel = go (sΓ @_@α)

where
go :: forall k f α . SΓ k α

→ Apply k f α → ApplyT k f α

go Sϵ x = A0 x
go (S& τ ) x = A+ (go τ x)

The definition of gfmap no longer needs to care about the
amount of wrapping needed by the generic operation, this
is inferred from the types involved.

gfmap f = unravel ◦ to ◦ goS ◦ from ◦ ravel

In fact, we can expose only the combination of (un)raveling
with to and from, making the writer of generic operations
completely unaware of the intermediate ApplyT datatype.

4.3 Are We Inconsistent?
In order to perform the entire construction, we were forced
to enable the TypeInType extension in GHC. This extension
is quite powerful: it allows working with kinds as they were
types, and to promote GADTs, among others. But it also
adds an axiom ∗ : ∗, which is known to introduce inconsis-
tency when we view the language as a logic [9]. We would
like to know whether this latter axiom is necessary for our

construction, or it could be achieved using a hierarchy of
universe levels.

To answer the questionwe have build amodel ofGenericsop⋆

in Agda, which we describe in Appendix A. If we assume that
our universe of basic types lives in Set0 , our codes live in Set1,
and our interpretation of those in Set2 . The code compiles
fine, showing that the ∗ : ∗ axiom is not essential to our
construction.

5 Constraints
Themove fromADTs to GADTsmakes it possible to require a
constraint to be satisfied when using a certain constructor of
a datatype. The Expr type described in the Introduction is one
example: it mandates the index to be exactly Bool in the IsZ
case. Here is another example, in which the constructor Refl
mandates the two type arguments to coincide by imposing
an equality constraint a ∼ b.

data Eql a b where
Refl :: a ∼ b ⇒ Eql a b

Since version 7.4.1, GHC treats constraints — in short, any-
thing which appears before the⇒ arrow— as regular ground
types, with the caveat that its kind is Constraint instead of
∗. We sometimes refer to constraints as implicit parameters,
since they are filled in by the compiler, as opposed to explicit
parameters which need to be given in the code. In fact, other
languages such as Agda and Scala have a native notion of im-
plicit parameters, which are often used to simulate Haskell’s
type class mechanism.
Up to now a datatype was defined as [[Atom ζ (∗)]],

where each element of the inner list represents a field in a
constructor. Now we introduce an additional layer, which
specified for each field whether it is implicit — and thus
should have kind Constraint — or explicit.
data Field (ζ :: Kind) where

Explicit :: Atom ζ (∗) → Field ζ

Implicit :: Atom ζ Constraint → Field ζ

type DataType ζ = [[Field ζ ]]

The interpretation functor NA has to be adapted:
data NA (ζ :: Kind) :: Γ ζ → Field ζ → ∗ where

E :: forall ζ t α . Ty ζ α t → NA ζ α (Explicit t)
I :: forall ζ t α . Ty ζ α t ⇒ NA ζ α (Implicit t)

The two constructors look almost the same. But the fact that
Ty ζ α t appears before a regular → arrow in E, and be-
fore a ⇒ arrow in I is enough to require the right kind to
come out of the application of Ty. This updated framework
is enough to describe the shape of the Eql datatype; we give
its Genericsop⋆ instance in Figure 5.
This is a rather slim layer that has to be added on top

of the previous constructions. Our Agda model in Appen-
dix A has constraints in it. Hence, this layer introduces no
inconsistency.

9
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instance Genericsop⋆ (k → k → ∗) Eql where
type Code Eql
= ′[ ′[Implicit (Kon (∼) :@: V0 :@: V1)]]

from (A+ (A+ (A0 Refl))) = Here $ I :∗ Nil

to :: forall α . SForΓ (k → k → ∗) α

⇒ SOP⋆ (k → k → ∗) (Code Refl) α
→ ApplyT (k → k → ∗) Refl α

to sop = case sΓ @_@α of
S& (S& Sϵ) → case sop of

Here (I :∗ Nil) → A+ $ A+ $ A0 Refl

Figure 5. The Genericsop⋆ instance for Eql

6 Existentials
Apart from constraints, every constructor in a GADT may
introduce one or more existentially quantified type variables,
which are available once your pattern match. Although seem-
ingly rare, existentials become ubiquituous once you con-
sider how GHC represents GADTs. Consider another simple
type of well-typed expressions, which features only integer
literals and pairs:

data Expr ′ t where
AnInt :: Int → Expr ′ Int
APair :: Expr ′ a → Expr ′ b → Expr ′ (a, b)

Under the hood, the refinement in the index of Expr ′ is turned
into an equality constraint, and every new new variable is
quantified. Thus, we obtain the following form:

data Expr ′ t where
AnInt :: t ∼ Int ⇒ Int → Expr ′ t
APair :: forall a b . t ∼ (a, b) ⇒ Expr ′ a → Expr ′ b

→ Expr ′ t

Our language of codes is enough to describe AnInt, but can-
not handle the introduction of new variables in APair . Let us
look at what would it take to extend our technique to handle
existential types.
Existentials are introduced at the level of constructors.

Before, each constructor was merely a [Field ζ ], but now we
are going to refine it with the possibility of introducing new
type variables; for each new variable we need to record its
kind. In a dependently-typed language we can encode this
construction using a recursive Branch datatype: we introduce
new variables by repeated applications of Exists, and then
move to describe the fields with Constr .

data Branch (ζ :: Kind) where
Exists :: (ℓ :: Kind) → Branch (ℓ → ζ ) → Branch ζ

Constr :: [Field ζ ] → Branch ζ

Haskell does not support full dependent types, so Branch
cannot be declared as above. As we did in Section 4 for the
indices of variables, we use a singleton instead. In contrast

with SNat, SKind does not reflect any information about the
kind itself, but we do not need to inspect that information
either for the upcoming constructions.4

data SKind (ℓ :: Kind) = K

data Branch (ζ :: Kind) where
Exists :: SKind ℓ → Branch (ℓ → ζ ) → Branch ζ

Constr :: [Field ζ ] → Branch ζ

As a consequence of this intermediate layer, datatypes are
no longer represented as mere lists of lists of fields, but as
[Branch ζ ], where each element contains information both
about existentials and about the fields.
The Expr ′ datatype above can be described using our ex-

tended language of codes as given in Figure 6. For that, we
do not use the user-facing version, but the second represen-
tation with explicit quantification and equalities. Note that
each Exists “shift” the position of type variables: the first
variable in the context is now the second, and so on. As a
result, V0 refers to the last-introduced variable, b in this case,
V1 corresponds to a, and V2 is the original type argument to
Expr ′, which we called t in the datatype declaration.

The next step is to update the interpretation of the codes.
Unfortunately, our datatypes are not described by a list of
lists anymore. This means we cannot define its interpreta-
tion as a simple composition of NS, NP , and NA. We then
introduce NB, which interprets Branches and has the form:
data NB (ζ :: Kind) :: Γ ζ → Branch ζ → ∗ where

Ex :: forall ℓ (t :: ℓ) (p :: SKind ℓ) ζ α c .
NB (ℓ → ζ ) (t :&: α) c → NB ζ α (Exists p c)

Cr :: NP (NA ζ α) fs → NB ζ α (Constr fs)

The recursion in the syntax of existential quantification is
reflected in the recursive use of NB in the constructor Ex.
More importantly, thanks to the singleton SKind ℓ we can
obtain the kind ℓ which was introduced in the code. Then,
we use existential quantification at the meta-level to gener-
ate a fresh type t of that kind, which we add to the context
in the first position, matching the change in the structure
that Exists performs in the kind. Once we do not need more
existential variables, Cr just continues as usual, by requiring
NP (NA ζ α) for the fields fs.
Since now the call to NP is inside NB, we need to update

the top-level SOP⋆ type too.
type SOP⋆ ζ (c :: DataType ζ ) (α :: Γ ζ ) = NS (NB ζ α) c

The Genericsop⋆ type class, on the other hand, is not affected
by these changes. The instances, however, need to change
their codes and isomorphisms to reflect the new intermediate
layer between outer and inner lists.

4Peyton Jones et al. [25] describes TypeRep, which provides type-indexed
type representations. However, it is not (yet) possible to promote TypeRep
operations to the type level.
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type TmCode
= ′[ Constr ′[Implicit (Kon (∼) :@: Kon Int :@: V0), Explicit (Kon Int)],

Exists K (Exists K (Constr ′[Implicit (Kon (∼) :@: V2 :@: (Kon (, ) :@: V1 :@: V0)),

Explicit (Kon Expr ′ :@: V1), Explicit (Kon Expr ′ :@: V0)]))]

Figure 6. Code for Expr ′

7 Related Work
Sums of products. Our approach to generic programming
is heavily inspired by the original list-of-list-of-types con-
struction by de Vries and Löh [6]. Each of the extensions
we present: support for multiple kinds, constraints, explicit
recursion, and existentials, could be applied independently
of the original framework. Conversely, generics-sop sup-
ports metadata about types and constructors, and the same
techniques are readily applicable to our case.
There seems to be a trade-off in the amount of traversal

combinators that can be implemented. generics-sop comes
with a huge library of maps, sequences, and folds. Our defi-
nition of gfmap, on the other hand, traverses the SOP⋆ struc-
ture manually; and we cannot easily abstract that pattern
because of the very strong types which are involved.

Generic universes. With respect to our Agdamodel, Appen-
dix A, we have adapted the technique of generic program-
ming with universes [1], where one separates the description
of types from their interpretation into different hierarchies.
That is, if the description of types live in Seti, then their
interpretation lives in Seti+1. Differently from Altenkirch
et al. [1], we enforce that the descriptions must be in the
sums-of-products shape, we do not handle mutual recursion
and we handle predicates over variables. This requires us to
put the elements of the interpretation in Seti+2. These differ-
ences stems from the fact that we aim at representing Haskell
datatypes, including GADTs with potential constraints.

GADTs. The problem of generic programming for GADTs
have not received much attention in the literature. The ap-
proach of Magalhães and Jeuring [16] is based on pattern
functors: the basic set of blocks is extended with CEq, which
represents equalities at the level of constructors, and a “mo-
bility family” X to fake existentials. Our approach reuses
most of the machinery for regular types, by taking advan-
tage of the availability of Constraint as a kind in GHC. Using
quantified class constraints [5], Scott [27] describes how to
derive Generic for some GADTs. The approach does not scale,
though, to handle existentials or kinds different from ∗.

Kind-genericity. Hinze [10, 11] describe an approach to
generic operations for different kinds. The leverage the pat-
tern functors (as those used in GHC.Generics) to work on
different kinds, and define operations indexing by the kind.
Our approach is quite different, as we extend the language
of atoms in generic-sop to cover different kinds.

Weirich and Casinghino [30] define arity-generic opera-
tions, such as the family of functions zipWith, zipWith3, and
so on. In their case the operations are indexed by a natural
number which specifies the amount of arguments; in con-
trast our development is indexed by contexts Γ which specify
the kind of each type variable.

8 Conclusion and Future Work
Although we greatly exapended the set of types that the
(generic) programmer has access to, this is still not exhaus-
tive. With the introduction of the TypeInType extension,
quantification in types works as a telescope. That is, the
kind of a variable might depend on the variables introduced
before it. For example, here t depends on the kind ζ :
data KTProxy ζ t where

KTProxy :: forall ζ (t :: ζ ) . KTProxy ζ t

The Exists combinator in our library only allows constant
kinds to quantify over.
Another shortcoming of our library is that only single

recursion can be represented. The multirec [35] library
adds support families of mutually recursive datatypes, and
generic-mrsop [21] translated its approach to the sum-of-
products style. However, in both cases all members of a
datatype are restricted to be of kind ∗. It might be possible to
use a similar technique — adding an index to the Rec atom
– to try tackling this. The difficulty is in the possibility of
different members of the family having different kinds.
Through several refinements, starting with the original

sum-of-products construction, we have built a generic pro-
gramming library supporting a wider range of datatypes.
Our main novelties are the uniform treatment of different
kinds, and the support for the most important features in
GADTs. To do so, we have leveraged many of the Haskell
extensions proposed in the literature and available in GHC.
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A Reference Implementation in Agda
In this sectionwe shall describe theAgdamodel ofGenericsNSOP .
Agda [24] is a depentently typed language with a predicative
hierarchy of universes. This allows us to model our construc-
tion with a finer level of detail. Ultimately showing one does
not need the Set:Set axiom to make the construction work.
The starting point for our construction is modelling the

notion of kind, as we aim to encode arbitrarily kinded types.
Here we mimick Haskell’s kind syntax.

data K : Set where
⋆ : K
_⇒ _ : K→ K→ K

Although their semantics are simple, we already need to
start mapping K to Set1, since we want to have ground types
in Set:

J_KK : K→ Set1

J⋆KK = Set
Jk1 ⇒ k2KK = Jk1KK → Jk2KK
In order to refer to the kind of a type variable within a

larger kind declaration we declare the TyVar relation below.
Essentially, an inhabitant of type TyVar ks k provides a way
to extract some kind k from within ks.
data TyVar : K→ K→ Set where

VZ : ∀ {k ks } → TyVar (k ⇒ ks) k
VS : ∀ {k k′ ks } → TyVar ks k → TyVar (k′ ⇒ ks) k

Next, we can define the language of terms and contexts,
just like we did in Section 4:

data Atom (ζ : K) : K→ Set1 where
Var : ∀ {k1 } → TyVar ζ k1 → Atom ζ k1

Kon : ∀ {k1 } → Jk1KK → Atom ζ k1

App : ∀ {k1 k2 } → Atom ζ (k1 ⇒ k2) → Atom ζ k1

→ Atom ζ k2

data Γ : K→ Set1 where
GZ : Γ ⋆
GS : ∀ {k1 k2 } → Jk1KK → Γ k2 → Γ (k1 ⇒ k2)

Now, given a environment γ , we can interpret a term
t : Atom ζ k into an inhabitant of JkKK.

Ty : ∀ { res k } → Γ k → Atom k res → JresKK
Ty GZ (Var ())

Ty (GS g γ ) (Var VZ) = γ

Ty (GS g γ ) (Var (VS v)) = Ty γ (Var v)
Ty γ (Kon x) = x
Ty γ (App f x) = Ty γ f (Ty γ x)

Note how we can discharge the case of interpreting a vari-
able in an empty environment. Finally, we are now able to de-
fine the fields of the constructors. These come in two flavours.
Explicit fields are values of some ground type whereas im-
plicit fields are constraints over the type parameters in scope.

data Field (k : K) : Set2 where
Explicit : Atom k ⋆ → Field k
Implicit : (Γ k → Set1) → Field k

The most interesting part of the model is, in fact, the
handling of constraints. A constraint is a predicate over
the types that will be in scope when type checking that
constructor. These types are the interpretation of some kind
k, JkKK, and hence, inhabitants of Set1. This forces us to map
Γ k into Set1, which brings the universe of Field into Set2 .
Interpreting a Field can be done back in Set1 again:

J_KA : ∀ {k } → Field k → Γ k → Set1

JExplicit tKA γ = Lift (Ty γ t)
JImplicit ctrKA γ = ctr γ

Where Lift : Set → Set1 lifts an inhabitant of a smaller
universe into a bigger one. The rest of the model is trivial.
We define a product of kind k and a sum of kind k as lists,
and interpret them using All and Any, respectively.

Prod SoP : K→ Set2

Prod k = List (Field k)
SoP k = List (Prod k)

J_KP : ∀ {k } → Prod k → Γ k → Set2

JαKP γ = All (λα → JαKA γ ) α

J_KS : ∀ {k } → Prod k → Γ k → Set2

JpsKS γ = Any (λπ → JπKP γ ) ps

Finally, going full circle and encoding the example shown
at the introduction would look like:

data IsNat : Set → Set where
Prf : Nat → IsNat Nat

isnatSOP : SoP (⋆⇒⋆)

isnatSOP = (Implicit ctr :: Explicit (Var VZ) :: [ ]) :: [ ]
where

ctr : Γ (⋆⇒⋆) → Set1

ctr (x :: [ ]) = x ≡ Nat

Adding an extra constructor to Atom to mark, explicitely,
which are the recursive positions is quite simple. The con-
structor would have type:

Rec : Term k k

And we would need one extra parameter of type JkKK in
the interpretation functions. Again, as long as we do not take
the least fixpoint of this construction, there is no need for
the Set : Set axiom.
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B Explicit Recursion
Up until now, we have not distinguished recursive positions
from regular fields in our datatypes. This is also the case in
Generic and Genericsop, where recursion is implicit.
Marking recursion explicitly is advantageous but intro-

duces a more intricate design. It enables one to write combi-
nators exploiting recursion schemes, such as fold, but it in-
troduces some extra complexity to the atoms of the universe
and one extra parameter to the interpretation of codes. In
fact, some generic operations require this explicit recursion
information. Such as the definition of diff and patch [14, 20],
zippers [12], and tree regular expressions [28].
The technique of marking recursive positions [23, 35]

starts with expanding the atoms with a new building block:
data Rec p = Rec p

Although isomorphic to I , Rec serves quite a different pur-
pose. Nevertheless, the second step is to bubble up one extra
parameter to the interpretation of codes, lifting it to ∗ → ∗.
The from function would then have a type similar to:

from :: a → Rep a a

Passing a as this extra parameter closes the recursive knot.
Let us now apply the same technique to our scenario. We

start by extending the Atom type with a new constructor:
data Atom (ζ :: Kind) k where
. . .

Rec :: Atom ζ ζ

The kind of a recursive occurence is exactly the kind of what-
ever datatype we are defining. As an example, we can provide
a more informative code for [ ], where the recursion is ex-
plicit:

type ListCode = ′[ ′[ ], ′[V0, Rec :@: V0 ]]

The next step is to extend the interpretation of atoms
to include this new construction. As in the case of Noort
et al. [23], we only tie the recursive knot at the level of the
Genericsop⋆ type class. In the meantime, Ty is extended with a
new argument, which declares which is the type to be used
whenever Rec is found.

type family Ty (ζ :: Kind) (r :: ζ ) (α :: Γ ζ )

(t :: Atom ζ k) :: k where
. . .

Ty ζ r α Rec = r

As a consequence, NA and SOP⋆ also gain a new type param-
eter for this recursive position.

data NA (ζ :: Kind) :: ζ → Γ ζ → Field ζ → ∗ where . . .
type SOP⋆ ζ (c :: DataType ζ ) (r :: ζ ) (α :: Γ ζ )

= NS (NP (NA ζ r α)) c

Finally, the updated Genericsop⋆ mandates this recursive posi-
tion to be instantiated with the datatype we are describing,

tying the knot. This approach is similar to the Genericregular

type class.
class Genericsop⋆ ζ (f :: ζ ) where
type Code f :: DataType ζ

to :: ApplyT ζ f α → SOP⋆ ζ (Code f ) f α

from :: SForΓ ζ α

⇒ SOP⋆ ζ (Code f ) f α → ApplyT ζ f α

Since the constructors in NA do not change depending on
whether we have used Rec or not to describe the datatype, the
instances we provided for the previous version of Genericsop⋆

keep working in the version with explicit recursion.
It is important to note that marking recursive positions

explicitly is still sound, as demonstrated by the Agda model
in Appendix A. Unfolding this recursion and taking the least
fixed point of a type is not, however. That is, we cannot write
a Fix type, in the lines of:
data Fix f = Fix (f (Fix f ))

That is because the interpretation of sums lives in the
second predicative universe (Set2), which forces Fix to live
in Set2 aswell. However, the argument we have to pass to
the interpretation of must be an inhabitant of Set1, hence
we cannot feed Fix f back into f . This would require the
Set:Set axiom, breaking consistency. Hence, just marking the
positions is fine, unfolding the recursion is where we would
find problems.

Updating gfmap. In Figure 4we used an ancillary FunctorAtom
type class to describe which fields we could map over. It is
impossible, though, to write an instance of this form:

instance (FunctorAtom x) ⇒ FunctorAtom (Rec :@: x)

In fact, gfmap defines the operation for the type we are recur-
ring over, so this instance ought to exist! In order to convince
the compiler, we play the same trick as before: work with r
as an independent entity, and only tie the knot at the level
of gfmap. We need to pass the function which works on the
recursive position as an additional argument.

class FunctorAtom r (t :: Atom (∗ → ∗) (∗)) where
gfmapF :: (forall x y . (x → y) → r x → r y)

→ (a → b)
→ NA (∗ → ∗) r (a :&: ϵ) t
→ NA (∗ → ∗) r (b :&: ϵ) t

instance (FunctorAtom r x)
⇒ FunctorAtom r (Rec :@: x) where

gfmapF r f (T x)
= T (r (unT ◦ gfmapF r f ◦ T @_@x@r) x)

The trick now is to make the FunctorAtom constraint used in
All2 refer to the same f as in the code. And to close the loop,
when we call gfmapF , we pass gfmap itself as the function
to execute in the when Rec is found.
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gfmap :: (Genericsop⋆ (∗ → ∗) f ,
AllD (FunctorAtom f ) (Code f ))

⇒ (a → b) → f a → f b
gfmap f = . . .
where

goP Nil = Nil
goP (T x :∗ xs) = gfmapF gfmap f (T x) :∗ goP xs

This approach makes the definition of gfmap self-contained,
in contrast to the definition without explicit recursion, in
which a Functor instance needs to be written to make recur-
sion possible.

B.1 Explicit Recursion and Existentials
The combination of existentials with explicit recursion is not
as straightforward as the combination of constraints from
Section 5 with explicit recursion. In this section we outline
the changes required to bring both concepts under the same
umbrella.
For the language of codes the introduction of Rec does

not stop the original implementation from compiling. But
we also need to update the interpretation datatype NB, by
adding an additional argument for the recursive position:

data NB (ζ :: Kind) :: ζ → Γ ζ → Branch ζ → ∗ where
Ex :: forall ℓ (t :: ℓ) (p :: SKind ℓ) ζ α r c .

NB (ℓ → ζ )?(t :&: α) c → NB ζ r α (Exists p c)
Cr :: NP (NA ζ r α) fs → NB ζ r α (Constr fs)

If we do not introduce any new variables – the case of Constr
– we can pass down to NA the same type for the recursive
position. On the other hand, the case of Exists forces the ar-
gument to Ex to have kind ℓ → ζ . But r has kind ζ instead.

The problem is that we are using the kind ζ for two differ-
ent tasks. On the one hand, ζ fixes the shape of the context
Γ . On the other hand, ζ specified which is the kind obtained
when recursion is performed, that is, when Rec is used as part
of an atom. When one uses Exists the additional type should
only be introduced in the context, whereas the recursive
positions should stay as they were.

The solution is to decouple this two modes of use of ζ . An
atom should take two kind arguments: ρ specifies the kind of
recursive positions, and ζ specifies the kinds in the context.

data Atom (ρ :: Kind) (ζ :: Kind) k where
Var :: TyVar ζ k → Atom ρ ζ k
Kon :: k → Atom ρ ζ k
(:@:) :: Atom ρ ζ (k1 → k2) → Atom ρ ζ k1

→ Atom ρ ζ k2

Rec :: Atom ρ ζ ρ

This change generates a chain reaction of updates (we refer
the reader to Appendix D for the complete code), the most
important being in NB:

data NB (ρ :: Kind) (ζ :: Kind)
:: ρ → Γ ζ → Branch ρ ζ → ∗ where

Ex :: forall ℓ (t :: ℓ) (p :: SKind ℓ) ρ ζ r α c .
NB ρ (ℓ → ζ ) r (t :&: α) c

→ NB ρ ζ r α (Exists p c)
Cr :: NP (NA ρ ζ r α) fs → NB ρ ζ r α (Constr fs)

Note how only the context argument is extended from ζ to
ℓ → ζ . The kind of the recursive position is kept as ρ.
The fact that ζ and ρ coincide before any existential is

introduced is made explicit in the updated definitions of
DataType and SOP⋆:
type DataType ζ = [Branch ζ ζ ]

type SOP⋆ ζ (c :: DataType ζ ) (r :: ζ ) (α :: Γ ζ )

= NS (NB ζ ζ r α) c

In both cases the single argument which represents the kind
of the datatype to describe is used as kind for recursion and
context.

C Arity-generic fmap
The generic fmap described in Section 4.1 can be generalized
to a version which works on any type constructor whose
type variables are all of kind ∗. The full code is given in
Figure 7, with some auxiliary definitions in Figures 8 and 9.
As we have already discussed, the mapping operation

kmap requires a different amount of functions to apply over
each type parameter depending on the kind of the type con-
structor. The Mappings datatype defines such a structure by
recursion over two contexts α and β which define the source
and target types.
The body of the generic implementation gkmap recurses

over the structure of a generic value. The first difference
with the implementation of gfmap – the generic fmap for
one-argument type constructors we developed in Section 4.1
– is that we do not only handle explicit fields in goP , but also
implicit values. Take the following datatype:

data Showy a where
Showable :: Show a ⇒ a → Showy a
NotShowable :: String → a → Showy a

If we want to perform a shape-preserving map, we need to
ensure that the target type argument satisfies the constraints
imposed by the different constructors. In this case, the type
of the map should be:

showyMap :: Show b ⇒ (a → b) → Showy a → Showy b

The ISatisfiedD type family in Figure 9 inspects the code of a
datatype building up the set of such constraints. The body of
the family is mostly recurring over the code; the interesting
bit is in the case of an Implicit field, for which we reify the
description of the type of the constraint by using Ty.

Most of the magic happens in KFunctorField, which takes
care of applying the mappings to each field in the datatype.
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data Mappings (α :: Γ ζ ) (β :: Γ ζ ) where
MNil :: Mappings ϵ ϵ

MCons :: (a → b) → Mappings α β → Mappings (a :&: α) (b :&: β)

class KFunctor ζ (f :: ζ ) where
kmap :: SForΓ ζ β ⇒ Mappings α β → ApplyT ζ f α → ApplyT ζ f β

default kmap :: (Genericsop⋆ ζ f , SForΓ ζ β,AllD KFunctorField (Code f ), ISatisfiedD ζ β (Code f ))
⇒ Mappings α β → ApplyT ζ f α → ApplyT ζ f β

kmap fs = to ◦ gkmap (Proxy :: Proxy f ) fs ◦ from

gkmap :: forall ζ (f :: ζ ) (α :: Γ ζ ) (β :: Γ ζ ) .

(Genericsop⋆ ζ f ,AllD KFunctorField (Code f ), ISatisfiedD ζ β (Code f ))
⇒ Proxy f → Mappings α β → SOP⋆ ζ (Code f ) α → SOP⋆ ζ (Code f ) β

gkmap f = goS
where

goS :: (AllD KFunctorField xs, ISatisfiedD k β xs) ⇒ NS (NB k α) xs → NS (NB k β) xs
goS (Here x) = Here (goB x)
goS (There x) =There (goS x)

goB :: (AllB KFunctorField xs, ISatisfiedB k β xs) ⇒ NB k α xs → NB k β xs
goB (Cr x) = Cr (goP x)

goP :: (AllE KFunctorField xs, ISatisfiedE k β xs) ⇒ NP (NA k α) xs → NP (NA k β) xs
goP Nil = Nil
goP (E x :∗ xs) = kmapf f (E x) :∗ goP xs
goP (I :∗ xs) = I :∗ goP xs

class KFunctorField (t :: Atom ζ ∗) where
kmapf :: Mappings α β → NA ζ α (Explicit t) → NA ζ β (Explicit t)

instance forall ζ (v :: TyVar ζ Type) . SForTyVar k v ⇒ KFunctorField (Var v) where
kmapf f (E x) = E (go (styvar@ζ@v) f x)
where go :: forall k (α :: Γ k) (β :: Γ k) (v :: TyVar k ∗) . STyVar k v → Mappings α β → Ty k α (Var v) → Ty k β (Var v)

go SVZ (MCons g ) x = g x
go (SVS v ′) (MCons f ′) x = go v ′ f ′ x

instance KFunctorField (Kon t) where
kmapf f (E x) = E x

instance forall f x . (KFunctorHead f ,KFunctorField x) ⇒ KFunctorField (f :@: x) where
kmapf f (E x) = E $ unA0 $ unA+

$ kmaph (Proxy :: Proxy f ) f (MCons (unE ◦ kmapf f ◦ E @_@x) MNil)
$ A+ $ A0 x

class KFunctorHead (t :: Atom ζ k) where
kmaph :: SForΓ k τ ⇒ Proxy t → Mappings α β → Mappings ρ τ

→ ApplyT k (Ty ζ α t) ρ → ApplyT k (Ty ζ β t) τ

instance forall f x . (KFunctorHead f ,KFunctorField x) ⇒ KFunctorHead (f :@: x) where
kmaph f r x = unA+ $ kmaph (Proxy :: Proxy f ) f (MCons (unE ◦ kmapf f ◦ E @_@x) r) $ A+ x

instance forall k (f :: k) . (KFunctor k f ) ⇒ KFunctorHead (Kon f ) where
kmaph r x = kmap r x

Figure 7. Arity-generic map kmap and associated type class KFunctor
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data STyVar k (t :: TyVar k ∗) where
SVZ :: STyVar (∗ → k) VZ
SVS :: STyVar k v → STyVar (∗ → k) (VS v)

class SForTyVar k (t :: TyVar k ∗) where
styvar :: STyVar k t

instance SForTyVar (∗ → k) VZ where
styvar = SVZ

instance SForTyVar k v ⇒ SForTyVar (∗ → k) (VS v) where
styvar = SVS styvar

Figure 8. Auxiliary singleton for TyVar

type family AllD c xs :: Constraint where
AllD c ′[ ] = ()

AllD c (x ′ : xs) = (AllB c x,AllD c xs)

type family AllB c xs :: Constraint where
AllB c (Constr x) = AllE c x

type family AllE c xs :: Constraint where
AllE c ′[ ] = ()

AllE c (Explicit x ′ : xs) = (c x,AllE c xs)
AllE c (Implicit x ′ : xs) = AllE c xs

type family ISatisfiedD ζ (α :: Γ ζ ) xs :: Constraint where
ISatisfiedD ζ α ′[ ] = ()

ISatisfiedD ζ α (x ′ : xs)
= (ISatisfiedB ζ α x, ISatisfied ζ α xs)

type family ISatisfiedB ζ (α :: Γ ζ ) xs :: Constraint where
ISatisfiedB ζ α (Constr x) = ISatisfiedE ζ α x

type family ISatisfiedE ζ (α :: Γ ζ ) xs :: Constraint where
ISatisfiedE ζ α ′[ ] = ()

ISatisfiedE ζ α (Implicit x ′ : xs)
= (Ty ζ α x, ISatisfiedE ζ α xs)

ISatisfiedE ζ α (Explicit x ′ : xs)
= ISatisfiedE ζ α xs

Figure 9. Auxiliary type families for arity-generic fmap

The Kon case is the simplest one, as no change has to take
place. The case of a type variable is more complicated, as we
need to lookup the function to apply in the list of mappings.
Since the de Bruijn index of the variable only exists at type
level, but we need different run-time behavior depending
on it, we are require to introduce a singleton, which we do
in Figure 8. Once we obtain the singleton using styvar , we
traverse it in sync with the list of mappings. The indices in
both cases ensure that we can only apply the correct mapping
from the ones available.

Consider now the case of an application of a type con-
structor to one or more types. For example, in the second
field of Fork,
data Rose a = Fork a [Rose a]

To implement map over Rose, we need to call the map op-
eration on [ ]. However, we cannot maintain the same list
of mappings, since we need to map Rose a to Rose b. As a
consequence, when we find a type application in a field, we
need to build the new list of mappings, which is then fed to
the type constructor on the head of the application.
Such an algorithm is implemented by the KFunctorHead

type class in Figure 7. Note that the kmaph operation take
not one, but two lists of mappings. The first one refers to the
original context α and β , the second one accumulates the
new mappings for the type arguments ρ and τ . If we find
an application we attach a new mapping – note the use of
MCons –, if we are already at the end of the application we
recursively apply kmap. There is no case for a head being a
variable, as we assume that the datatype for which we are
defining kmap has only ∗-kinded arguments.

D Full Implementation
Throughout the paper we have refined the different types and
classes involved in our generic programming library.We give
the end result as a reference, with support for constraints,
existentials, and explicit recursion. Figure 10 describes the
language of codes, Figure 11 the datatypes involved in the in-
terpretation of the codes, Figure 12 the Genericsop⋆ type class
and ancillary constructions, and Figure 13 the conversion
between applied types and the evidence-carrying ApplyT .

D.1 List of Extensions
For reference, we list here the language extensions that must
be enabled in GHC version 8.4.1.

• For the core constructionwe require TypeInType,GADTs,
DataKinds, TypeFamilies, ScopedTypeVariables; and the
following extensions to type classes: MultiParamType-
Classes, InstanceSigs, FlexibleContexts, and FlexibleIn-
stances.

• Support for constraints: ConstraintKinds.
• Support for explicit recursion: RankNTypes.
• To refer to the kind (∗) explicitly: ExplicitNamespaces.

There are also some language extensions whose use is not
essential to the construction, but are required to compile the
code as given:

• TypeOperators is required to use (:@:), (:&:), and (:∗),
as constructor names.

• TypeApplications to fix the types of some uses of T .
We could have used Proxy values instead, but this ap-
proach is clearer.
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data TyVar (ζ :: Kind) k where
VZ :: TyVar (x → xs) x
VS :: TyVar xs k → TyVar (x → xs) k

data Atom (ρ :: Kind) (ζ :: Kind) k where
Var :: TyVar ζ k → Atom ρ ζ k
Kon :: k → Atom ρ ζ k
Rec :: Atom ρ ζ ρ

(:@:) :: Atom ζ (k1 → k2) → Atom ζ k1 → Atom ζ k2

data Field (ρ :: Kind) (ζ :: Kind) where
Explicit :: Atom ρ ζ (∗) → Field ρ ζ

Implicit :: Atom ρ ζ Constraint → Field ρ ζ

data SKind (ℓ :: Kind) = K

data Branch (ρ :: Kind) (ζ :: Kind) where
Exists :: SKind ℓ → Branch ρ (ℓ → ζ ) → Branch ρ ζ

Constr :: [Field ρ ζ ] → Branch ρ ζ

type DataType ζ = [Branch ζ ζ ]

Figure 10. Full implementation, part 1: language of codes

data Γ (ζ :: Kind) where
ϵ :: Γ (∗)

(:&:) :: k → Γ ks → Γ (k → ks)

type family Ty (ρ :: Kind) (ζ :: Kind) (r :: ρ) (α :: Γ ζ ) (t :: Atom ρ ζ k) :: k where
Ty ρ (k → ks) r (t :&: α) (Var VZ) = t
Ty ρ (k → ks) r (t :&: α) (Var (VS v)) = Ty ρ ks r α (Var v)
Ty ρ ζ r α (Kon t) = t
Ty ρ ζ r α (f :@: x) = (Ty ρ ζ r α f ) (Ty ρ ζ r α x)
Ty ρ ζ r α Rec = r

data NA (ρ :: Kind) (ζ :: Kind) :: ρ → Γ ζ → Field ζ → ∗ where
E :: forall ρ ζ t r α . {unE :: Ty ρ ζ r α t } → NA ρ ζ r α (Explicit t)
I :: forall ρ ζ t r α . Ty ρ ζ r α t ⇒ NA ρ ζ r α (Implicit t)

data NP :: (k → ∗) → [k ] → ∗ where
Nil :: NP f ′[ ]

(:∗) :: f x → NP f xs → NP f (x ′ : xs)

data NB (ρ :: Kind) (ζ :: Kind) :: ρ → Γ ζ → Branch ζ → ∗ where
Ex :: forall ℓ (t :: ℓ) (p :: SKind ℓ) ρ ζ r α c . NB ρ (ℓ → ζ ) r (t :&: α) c → NB ρ ζ r α (Exists p c)
Cr :: NP (NA ρ ζ r α) fs → NB ρ ζ r α (Constr fs)

data NS :: (k → ∗) → [k ] → ∗ where
Here :: f k → NS f (k ′ : ks)
There :: NS f ks → NS f (k ′ : ks)

type SOP⋆ (ζ :: Kind) (c :: DataType ζ ) (r :: ζ ) (α :: Γ ζ ) = NS (NB ζ ζ r α) c

Figure 11. Full implementation, part 2: interpretation of codes
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data SΓ ζ (α :: Γ ζ ) where
Sϵ :: SΓ (∗) ϵ

S& :: SΓ ks τ → SΓ (k → ks) (t :&: τ )
class SForΓ k (α :: Γ k) where

sΓ :: SΓ k α

instance SForΓ (∗) ϵ where
sΓ = Sϵ

instance SForΓ ks τ ⇒ SForΓ (k → ks) (t :&: τ ) where
sΓ = S& sΓ

data ApplyT k (f :: k) (α :: Γ k) :: ∗ where
A0 :: {unA0 :: f } → ApplyT (∗) f ϵ

A+ :: {unA+ :: ApplyT ks (f t) τ }
→ ApplyT (k → ks) f (t :&: τ )

class Genericsop⋆ ζ (f :: ζ ) where
type Code f :: DataType ζ
from :: ApplyT ζ f α → SOP⋆ ζ (Code f ) f α

to :: SForΓ ζ α

⇒ SOP⋆ ζ (Code f ) f α → ApplyT ζ f α

Figure 12. Full implementation, part 3: Genericsop⋆ type class

type family Apply ζ (f :: ζ ) (α :: Γ ζ ) :: ∗ where
Apply (∗) f ϵ = f
Apply (k → ks) f (t :&: τ ) = Apply ks (f t) τ

unravel :: ApplyT k f α → Apply k f α

unravel (A0 x) = x
unravel (A+ x) = unravel x

ravel :: forall k f α . SForΓ k α

⇒ Apply k f α → ApplyT k f α

ravel = go (sΓ @_@α)

where
go :: forall k f α . SΓ k α

→ Apply k f α → ApplyT k f α

go Sϵ x = A0 x
go (S& τ ) x = A+ (go τ x)

Figure 13. Full implementation, part 4: utility functions
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