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Abstract
The UNIX diff tool – which computes the differences between two files in terms of a
set of copied lines – is widely used in software version control. The fixed lines-of-code
granularity, however, is sometimes too coarse and obscures simple changes, i.e., renam-
ing a single parameter triggers the whole line to be seen as changed. This may lead to
unnecessary conflicts when unrelated changes occur on the same line. Consequently, it
is difficult to merge such changes automatically.

In this thesis we discuss two novel approaches to structural differencing, generically
– which work over a large class of datatypes. The first approach defines a type-indexed
representation of patches and provides a clear merging algorithm, but it is computation-
ally expensive to produce patches with this approach. The second approach addresses
the efficiency problem by choosing an extensional representation for patches. This en-
ables us to represent transformations involving insertions, deletions, duplication, con-
tractions and permutations which are computable in linear time. With the added ex-
pressivity, however, comes added complexity. Consequently, the merging algorithm is
more intricate and the patches can be harder to reason about.

Both of our approaches can be instantiated tomutually recursive datatypes and, con-
sequently, can be used to compare elements of most programming languages. Writing
the software that does so, however, comes with additional challenges. To address this
we have developed two new libraries for generic programming in Haskell.

Finally, we empirically evaluate our algorithms by a number of experiments over real
conflicts gathered from GitHub. Our evaluation reveals that at least 26% of the conflicts
that developers face on a day-to-day basis could have been automatically merged. This
suggests there is a benefit in using structural differencing tools as the basis for software
version control.
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Introduction
Version Control is essential for most distributed collaborative work. It enables contrib-
utors to operate independently and later combine their work. For that, though, it must
address the situation where two developers changed a piece of information in different
ways. One option is to lock further edits until a human decides how to reconcile the
changes, regardless of the changes. Yet, many changes can be reconciled automatically.

Software engineers usually rely on version control systems to help with this dis-
tributed workflow. These tools keep track of the changes performed to the objects under
version control, computing changes between old and new versions of an object. When
time comes to reconcile changes, it runs a merge algorithm that decides whether the
changes can be synchronized or not. At the heart of this process is (A) the representa-
tion of changes, usually denoted a patch, (B) the computation of a patch between two
objects and (C) the ability to detect whether two patches are in conflict.

Maintaining software as complex as an operating system with as many as several
thousands contributors is a technical feat made possible thanks, in part, to a venerable
Unix utility: UNIX diff [46]. It computes the line-by-line difference between two tex-
tual files, determining the smallest set of insertions and deletions of lines to transform
one file into the other. In other words, it tries to share as many lines between source and
destination as possible. This is, in fact, the most widespread representation for patches,
used by tools such as Git, Mercurial and Darcs.

The limited grammar of changes used by the UNIX diff works particularly well
for programming languages that organize a program into lines of code. For example,
consider the modification in Figure 1.1, where the insertions do not interfere with the
rest of the program.
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sum := 0;
+ prod := 1;

for (i in is) {
sum += i;

+ prod *= i;
}

Figure 1.1: Modification that extends an existing for-loop to not only compute the
sum of the elements of an array, but also compute their product.

However, the bias towards lines of code may lead to (unnecessary) conflicts when
considering other programming languages. For instance, consider the following diff be-
tween two Haskell functions that adds a new argument to an existing function:

- head [] = error "?!"
- head (x :: xs) = x
+ head [] d = d
+ head (x :: xs) d = x

This modest change impacts all the lines of the function’s definition, even though it
affects relatively few elements of the abstract-syntax.

The line-based bias of the diff algorithm may lead to unnecessary conflicts when
considering changes made by multiple developers. Consider the following innocuous
improvement of the original head function, which improves the error message raised
when the list is empty:

head [] = error "Expecting a non-empty list."
head (x :: xs) = x

Trying to apply the patch above to this modified version of the head function will fail,
as the lines do not match – even if both changes modify distinct parts of the declaration
in the case of non-empty lists.

The inability to identify more fine grained changes in the objects being compared is
a consequence of the by line granularity of patches. Ideally, however, the objects under
comparison should dictate the granularity of change to be considered. This is precisely
the goal of structural differencing tools.

If we reconsider the example above, we could give a more detailed description of
the modification made to the head function by describing the changes made to the con-
stituent declarations and expressions:

head [] {+d+} = error {-"?!"-} {+"Expect..."+}
head (x :: xs) {+d+} = x
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There ismore structure here thanmere lines of text. In particular, the granularity is at the
abstract-syntax level. It is worthwhile to note that this problem also occurs in languages
which tend to be organized in a line-by-line manner. Modern languages which contain
any degree of object-orientation will also group several abstract-syntax elements on the
same line. Take the Java function below,

public void test(obj) {
assert(obj.size(), equalTo(5));

}

Now consider a situation where one developer updated the test to require the size
of obj to be 6, but another developer changed the function that makes the comparison,
resulting in the two orthogonal versions below;

public void test(obj) {
assert(obj).hasSize(5);

}

public void test(obj) {
assert(obj.size(), equalTo(6));

}
It is arguable that the desired synchronized version can incorporate both changes,

calling assert(obj).hasSize(6). Combining these changeswould be impossiblewith-
out access to information about the old and new state of individual abstract-syntax ele-
ments. Simple line-based information is insufficient, even in line-oriented languages.

Differencing and synchronization algorithms tend to follow a common framework –
compute the difference between two values of some type a, and represent these changes
in some type, Patch a. The diff function computes the differences between two values of
type a, whereas apply attempts to transform a value according to the information stored
in the Patch provided to it.

diff ∶∶ a→ a→ Patch a
apply ∶∶ Patch a→ a→ Maybe a

A definition of Patch a which has access to information about the structure of a
enables us to represent changes at a more refined granularity. In Chapters 4 and 5 we
discuss two different definitions of Patch, both capturing changes at the granularity of
abstract-syntax elements.

Note that the apply function is inherently partial, for example, when attempting to
delete data which is not present applying the patch will fail. Yet when it succeeds, the
apply function must return a value of type a. This may seem like an obvious design
choice, but this property does not hold for the approaches [7, 31] using xml or json
to represent abstract syntax trees, where the result of applying a patch may produce ill-
typed results, i.e., schema violations.

UNIX diff [46] follows this very framework too, but for the specific type of lines of
text, taking a to be [String] and Patch a to be a series of insertions, deletions and copies
of lines. A naive implementationwould produce patches by enumerating all possibilities
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that transform the source into the destination and then chooses the best such patch. The
UNIX diff computes its patches in a more complex and efficient manner, but follows
the above method as its specification. There have been several attempts at generalizing
these results to handle arbitrary datatypes [114, 27, 87, 55], including our own attempt
discussed in Chapter 4. All of these follow the same recipe: enumerate all combinations
of insertions, deletions and copies that transform the source into the destination and
choose the ‘best’ one. Consequently, they also suffer from the same drawbacks as classic
edit-distance – which include non-uniqueness of the best solution and slow algorithms.
We will discuss them in more detail in Section 2.1.1.

Oncewehave the diff and apply functions at hand, wemove on to themerge function,
which is responsible for synchronizing two different changes into a single one, when
they are compatible. Naturally, we can only merge patches that alter disjoint parts of the
AST. Hence, the merge function must be partial, returning a conflict whenever patches
change the same part of the tree in different ways.

merge ∶∶ Patch a→ Patch a→ Either Conflicts (Patch a)

A realistic merge function should naturally distribute conflicts to their specific lo-
cations inside the merged patch and still try to synchronize non-conflicting parts of the
changes. This is orthogonal to our objective, however. The abstract idea is still the same:
two patches can either be reconciled fully or there exist conflicts between them.

The success rate of the merge function – that is, how often it is able to reconcile
changes – can never be 100%. There will always be changes that require human inter-
vention to be synchronized. Nevertheless, the quality of the synchronization algorithm
directly depends on the expressivity of the Patch datatype. If Patch provides information
solely onwhich lines of the source have changed, there is little we canmerge. Hence, we
want values of typePatch to carry information about the structure of a. Naturally though,
we do not want to build domain specific tools for each programming language for which
we wish to have source files under version control – which would be at least impractical.
A better option is to use a generic representation, which can be used to encode arbitrary
programming languages, and describe the Patch datatype generically.

Structural differencing is a good example of the need for generic programming. Here,
wewould like to have our differencing algorithmsworking over arbitrary abstract syntax
trees whilemaintaining the type-safety that a language likeHaskell provides: we encode
these ASTs as algebraic datatypes and write our differencing algorithm to operate over
these algebraic datatypes. This added safety means that all the manipulations we per-
form on the patches are guaranteed to never produce ill-formed elements, which is a
clear advantage over using something like XML to represent our data, even though there
exist differencing tools that use XML as their underlying representation for data. We refer
to these as untyped tree differencing algorithms in contrast to the typed approach, which
guarantees type safety by construction.
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The Haskell type-system is expressive enough to enable one to write typed generic
algorithms. These algorithms, however, can only be applied to datatypes that belong
to the set of types handled by the generic programming library of choice. For example,
the regular [82] approach is capable of handling types which have a regular recursive
structure – lists, 𝑛-ary trees, etc. –, but cannot represent nested types, for example. In
Section 2.2 we will give an overview of existing approaches to generic programming in
Haskell. No library, however, was capable of handling mutually recursive types – which
is the universe of datatypes that context free languages belong in – in a satisfactory man-
ner. This means that to explore differencing algorithms for various programming lan-
guages we would have to first develop the generic programming functionality necessary
for it. Happily, Haskell’s type system has evolved enough since the initial efforts on
generic programming for mutually recursive types (multirec [112]), enabling us to
write significantly better libraries, as we will discuss in Chapter 3.

1.1 Contributions and Outline

This thesis documents a number of peer-reviewed contributions, namely:

a) Chapter 3 discusses the generics-mrsop [75] library, which offers combinator-
based generic programming for mutually recursive families. This work came out
of close collaborationwithAlejandro Serrano on a variety of generic programming
topics.

b) Chapter 4 is derived fromapaper [74] publishedwithwith Pierre-ÉvaristeDagand.
We worked closely together to define a type-indexed datatype used to represent
changes in a more structured way than edit-scripts. Chapter 4 goes further into
developing a merging algorithm and exploring different ways to compute patches
given two concrete values. The code we present in Chapter 4 is loosely based on
Van Putten’s translation of our Agda repository to Haskell as part of his Master
thesis work [92].

c) Chapter 5 is the refinement of our paper [76] on an efficient algorithm for com-
puting patches, where we tackle the problems from Chapter 4 with a different
representation for patches altogether.

Other contributions that have not been peer-reviewed include:

d) Chapter 3 discusses the generics-simplistic library, a different approach
to generic programming that overcomes an important space leak in the Haskell
compiler, which rendered generics-mrsop unusable in large, real-world, ex-
amples.
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e) Chapter 5 introduces a merging algorithm and Chapter 6 discusses its empirical
evaluation over a dataset of real conflicts extracted from GitHub.
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Background
The most popular tool for computing differences between two files is UNIX diff [46],
which works by comparing files in a line-by-line basis and attempts to match lines from
the source file to lines in the destination file. For example, consider the two files below:

1 res := 0;
2 for (i in is) {
3 res += i;
4 }

1 print("summing up");
2 sum := 0;
3 for (i in is) {
4 sum += i;
5 }

Lines 2 and 4 in the source file, on the left, match lines 3 and 5 in the destination.
These are identified as copies. The rest of the lines, with no matches, are marked as
deletions or insertions. In this example, lines 1 and 3 in the source are deleted and lines
1,2 and 4 in the destination are inserted.

This information aboutwhich lines have been copied, deleted or inserted is then pack-
aged into an edit-script: a list of operations that transforms the source file into the desti-
nation file. For the example above, the edit-script would read something like: delete the
first line; insert two new lines; copy a line; delete a line; insert a line and finally copy
the last line. The output we would see from UNIX diffwould show deletions prefixed
with a minus sign and insertions prefixed with a plus sign. Copies have no prefix. In our
case, it would look something like:

- res := 0;
+ print("summing up");
+ sum := 0;

for (i in is) {
- res += i;
+ sum += i;

}
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The edit-scripts produced by the UNIX diff contain information about transform-
ing the source into the destination file by operating exclusively at the lines-of-code level.
Computing and representing differences in a finer granularity than lines-of-code is usu-
ally done by parsing the data into a tree and later flattening said tree into a list of nodes,
where one then reuses existing techniques for computing differences over lists, i.e., think
of printing each constructor of the tree into its own line. This is precisely how most of
the classic work on tree edit distance computes tree differences (Section 2.1.2).

Recycling linear edit distance into tree edit distance, however, comes with its draw-
backs. Linear differencing uses edit-scripts to represent the differences between two
objects. Edit-scripts are composed of atomic operations, which traditionally include at
least insert, delete and copy. These scripts are later interpreted by the application func-
tion, which gives the semantics to these operations. The notion of edit distance between
two objects is defined as the minimum possible cost associated with an edit-script be-
tween them, where cost is some metric which is often context dependent. One major
drawback, for example, is the least cost edit-script is chosen arbitrarily in some situa-
tions, namely, when it is not unique. This makes the results computed by these algo-
rithms hard to predict, and consequently, so is the result of merging patches.

The algorithms computing edit-scripts must either return an approximation of the
least cost edit-script or check countless ambiguous choices to return the optimal one. Fi-
nally, manipulating edit-scripts in an untyped fashion, say, for instance in order tomerge
then, might produce ill-typed trees – as in not abiding by a schema – as a result [107]. We
can get around this last issue bywriting edit-scripts in a typed form [55], but this requires
some non-trivial generic programming techniques to scale.

The first half of this chapter introduces some of the classical edit-script based algo-
rithms whereas the second half of presents the state-of-the-art of the generic program-
ming ecosystem in Haskell.

2.1 Differencing and Edit Distance

The edit distance between two objects is defined as the least possible cost of an edit-script
that transforms the source object into the target object – in its simplest form, it can be
seen as the cost of the edit-script with the least insertions and deletions. Computing
edit-scripts is often referred to as differencing objects. Where edit distance computation
is only concerned with how similar one object is to another, differencing, on the other
hand, is actually concerned with how to transform one objects into another. Although
very closely related, these do make up different problems. In the biology domain [2, 42,
67], for example, one is concerned solely in finding similar structures in a large set of
structures, whereas in software version control systems manipulating and combining
differences is important.
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The wide applicability of differencing and edit distances leads to a variety of cost
notions, edit-script operations and algorithms for computing them [16, 14, 84]. In this
section we will review some of the important notions and background work on edit dis-
tance. We start by looking at the string edit distance (Section 2.1.1) and then generalize
this to untyped trees (Section 2.1.2), as it is classically portrayed in the literature, which
is reviewed in Section 2.1.5.

2.1.1 String Edit Distance and UNIX diff

In this section we look at two popular notions of edit distance. The Levenshtein Dis-
tance [56, 14], for example, works well for detecting spelling mistakes [80] or measuring
how similar two languages are [103]. It considers insertions, deletions and substitutions
of characters as its edit operations. The Longest Common Subsequence (LCS) [14], on
the other hand, considers insertions, deletions and copies as edit operations and is bet-
ter suited for identifying shared sequences between strings.

Levenshtein Distance The Levenshtein distance regards insertions, deletions and
substitutions of characters as edit operations, which can be modeled in Haskell by the
EditOp datatype below. Each of those operations has a predefined cost metric.

data EditOp = Ins Char ∣ Del Char ∣ Subst Char Char
cost ∶∶ EditOp→ Int
cost (Ins ) = 1
cost (Del ) = 1
cost (Subst c d) = if c ≡ d then 0 else 1

These individual operations are then grouped into a list, usually denoted an edit-
script. The apply function, below, gives edit-scripts a denotational semantics bymapping
them to partial functions over Strings.

apply ∶∶ [EditOp] → String→ Maybe String
apply [ ] [ ] = Just [ ]
apply (Ins c ∶ ops) ss = (c∶) <$> apply ops ss
apply (Del c ∶ ops) (s ∶ ss) = guard (c ≡ s) >> apply ops ss
apply (Subst c d ∶ ops) (s ∶ ss) = guard (c ≡ s) >> (d∶) <$> apply ops ss
apply = Nothing

The costmetric associated with these edit operations is defined to force substitutions
to cost less than insertions and deletions. This ensures that the algorithm looking for the
list of edit operations with theminimum cost will prefer substitutions over deletions and
insertions.
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lev ∶∶ String→ String→ [EditOp]
lev [ ] [ ] = [ ]
lev (x ∶ xs) [ ] = Del x ∶ lev xs [ ]
lev [ ] (y ∶ ys) = Ins y ∶ lev [ ] ys
lev (x ∶ xs) (y ∶ ys) = let i = Ins y ∶ lev (x ∶ xs) ys

d = Del x ∶ lev xs (y ∶ ys)
s = Subst x y ∶ lev xs ys

in minimumBy cost [i , d , s]

Figure 2.1: Definition of the function that returns the edit-script with the minimum
Levenshtein Distance between two strings.

We can compute the edit-script, i.e. a list of edit operations, with the minimum cost
quite easily with a brute-force and inefficient specification, illustrated in Figure 2.1.

levenshteinDist ∶∶ String→ String→ Int
levenshteinDist s d = cost (head (lev s d))

Note that although the Levenshtein distance is unique, the edit-script witnessing it
is not. Consider the case of lev “ab” “ba” for instance. All of the edit-scripts below have
cost 2, which is the minimum possible cost.

lev “ab” “ba” ∈ [ [Del ′𝑎′ , Subst ′𝑏′ ′𝑏′ , Ins ′𝑎′ ]
, [Ins ′𝑏′ , Subst ′𝑎′ ′𝑎′ , Del ′𝑏′ ]
, [Subst ′𝑎′ ′𝑏′ , Subst ′𝑏′ ′𝑎′ ]]

From an edit distance point of view, this is not an issue. The Levenshtein distance
between “ab” and “ba” is 2, regardless of the edit-script. But from an operational point of
view, i.e., transforming one string into another, this ambiguity poses a problem. The lack
of criteria to favor one edit-script over another means that the result of the differencing
algorithm is hard to predict. Consequently, developing a predictable diff and merging
algorithm becomes a difficult task.

Longest Common Subsequence

Given our context of source-code version-control, we are rather interested in the Longest
Common Subsequence (LCS), which is a restriction of the Levenshtein distance and
forms the specification of the UNIX diff [46] utility.

If we take the lev function and modify it in such a way that it only considers identity
substitutions, that is, Subst x y with x ≡ y, we end up with a function that computes
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lcs ∶∶ [String] → [String] → [EditOp]
lcs [ ] [ ] = [ ]
lcs (x ∶ xs) [ ] = Del x ∶ lcs xs [ ]
lcs [ ] (y ∶ ys) = Ins y ∶ lcs [ ] ys
lcs (x ∶ xs) (y ∶ ys) = let i = Ins y ∶ lcs (x ∶ xs) ys

d = Del x ∶ lcs xs (y ∶ ys)
s = if x ≡ y then [Cpy x ∶ lcs xs ys] else [ ]

in minimumBy cost (s ++ [i , d])

Figure 2.2: Specification of the UNIX diff.

the classic longest common subsequence. Note that this is different from the longest
common substring problem, as subsequences need not be contiguous.

UNIX diff [46] is computes a solution to the LCS problem between two files, seen
as a list of strings, opposed to a list of characters. Hence, the edit operations become:

data EditOp = Ins String ∣ Del String ∣ Cpy String
cost ∶∶ EditOp→ Int
cost (Ins ) = 1
cost (Del ) = 1
cost (Cpy ) = 0

The application function is analogous to the apply for the Levenshtein distance. The
computation of the minimum cost edit-script, however, is not. We must ensure to issue
a Cpy only when both elements are the same, as illustrated in Figure 2.2.

Running the lcs x y function, Figure 2.2, will yield an edit-script that enables us to
read out one longest common subsequence of x and y. Note that the ambiguity problem is
still present, however to a lesser degree thanwith the Levenshtein distance. For example,
there are only two edit-scripts with minimum cost on lcs [“a” , “b”] [“b” , “a”]. This, in
fact, is a general problem with any edit-script based approach.

The original UNIX diff implementation was based on Hirschberg’s dynamic algo-
rithm [44], which uses a memoized lcs to avoid recomputing sub-problems and has a
quadratic runtime. The current implementation is based on Myers algorihm [79] and
runs in𝒪(𝑑(𝑛+𝑚)), where𝑛 and𝑚 are the size of the input files and 𝑑 is the edit distance
between them. Actual implementations also employs a number of algorithmic tricks to
make it more performant, for instance, it is common to hash the data being compared to
have amortized constant time comparison. There is also a number of heuristics that tend
to performwell in practice. One example is the diff --patience algorithm [24], that
will emphasize thematching of lines that appear only once in the source and destination
files.
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a

b c

∶∶ d ∶∶ e

f

∶∶ ...
x

a

b c

d

∶∶ e

f

...
ins x

del x

Figure 2.3: Insertion and Deletion of node x, with arity 2 on a forest.

2.1.2 Classic Tree Edit Distance

Tree edit-distance is a generalization of the (linear) edit-distance problem. Instead of
computing a distance between two lists of values, we are interested in a distance between
two trees of values. The classical algorithms [3, 27, 50, 16, 10, 21] consider untyped trees
– directed acyclic graphs where each vertex has at most one parent – as the objects under
scrutiny. We call them untyped in the sense that they do not abide by any schema: nodes
can have a label and an arbitrary number of children, opposed to a typed treewhichmust
abide by a given schema, i.e., it can be seen as a value of a family of ADTs in Haskell,
where the type signatures provide the schema.

There is an added degree of freedom that comes from considering trees instead of
lists, and this carries over to the choice of edit operations. Suddenly, there are more edit
operations one could use to create edit-scripts. To name a few, we can have flattening
insertions and deletions, where the children of the deleted node are inserted or removed
in-place in the parent node, or node relabeling. This degree of variation is responsible
for the high number of different approaches and techniques we see in practice [32, 41,
31, 84, 34], as addressed in Section 2.1.5.

Basic tree edit distance [27], however, considers only node insertions, deletions and
copies. The cost function is borrowed entirely from string edit distance together with the
longest common subsequence function, that instead of working with [a]will now work
with [Tree]. Figure 2.3 illustrates insertions and deletions of (untyped) labels on a forest.
The interpretation of these edit operations as actions on forests is shown in Figure 2.4.

We label these approaches as untyped because there exist edit-scripts that yield non-
well formed trees. For example, imagine l is a label with arity 2 – supposed to receive two
arguments. Now consider the edit-script Ins l ∶ [ ], which will yield the tree Node l [ ]
once applied to the empty forest. If the objects under differencing are required to abide
by a certain schema, such as abstract syntax trees for example, this becomes an issue.
Granted we could define apply to take arities into account, this is not the case for the
classical algorithms in the literature. This issue becomes particularly relevant when one
needs to manipulate patches independently of the objects they have been created from.



BACKGROUND 13

data EOp = Ins Label ∣ Del Label ∣ Cpy Label
data Tree = Node Label [Tree]
arity ∶∶ Label→ Int
apply ∶∶ [EOp] → [Tree] → Maybe [Tree]
apply [ ] [ ] = Just [ ]
apply (Cpy l ∶ ops) ts = apply (Ins l ∶ Del l ∶ ops) ts
apply (Del l ∶ ops) (Node l′ xs ∶ ts) = guard (l ≡ l′) >> apply ops (xs ++ ts)
apply (Ins l ∶ ops) ts = (𝜆(args , rs) → Node l args ∶ rs) ∘ takeDrop (arity l)

<$> apply ops ts
apply = Nothing

Figure 2.4: Definition of apply for tree edit operations.

Imagine a merge function that needs to construct a patch based on two other patches.
A wrong implementation of said merge function can yield invalid trees for some given
schema. In the context of abstract-syntax, this could be unparseable programs.

It is possible to use the Haskell type system to our advantage and write EOp in such
a way that it is guaranteed to return well-typed results. Labels will be the different con-
structors of the family of types in question and their arity comes from how many fields
each constructor expects. Edit-scripts will then be indexed by two lists of types: the types
of the trees it consumes and the types of the trees it produces. We will come back to this
in more detail in Section 3.1.4, where we review the approach of Lempsink and Löh [55]
at adapting this untyped framework to be type-safe by construction.

Although edit-scripts (Figure 2.4) provide a very intuitive notion of local transfor-
mations over a tree, there are many different edit-scripts that perform the same trans-
formation: the order of insertions and deletions does not matter. This makes it hard to
develop algorithms based solely on edit-scripts. The notion of tree mapping often comes
in handy. It works as a normal form version of edit-scripts and represents only the nodes
that are either relabeled or copied. Wemust impose a series of restrictions on these map-
pings to maintain the ability to produce edit-scripts out of it. Figure 2.5 illustrates four
invalid and one valid such mappings.

Definition 2.1.1 (TreeMapping). Let t and u be two trees, a treemapping between t and
u is an order preserving partial bijection between the nodes of a flattened representation
of t and u according to their preorder traversal. Moreover, it preserves the ancestral order
of nodes. That is, given two subtrees x and y in the domain of the mappingm, then x is
an ancestor of y if and only ifm x is an ancestor ofm y. We say that x is an ancestor of y
if x is reachable from y proceeding exclusively from child to parent.

The tree mapping determines the nodes where either a copy or substitution must be
performed. Everything else must be deleted or inserted and the order of deletions and
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Figure 2.5: A number of invalid invalid tree mappings with one valid example.

insertions is irrelevant, which removes the redundancy of edit-scripts. Nevertheless, the
definition of tree mapping is still very restrictive: the “bijective mapping” does not en-
able trees to be duplicated or contracted, as seen in Figures 2.5(a) and 2.5(b); the “order
preserving” does not enable trees to be permuted or moved across ancestor boundaries,
as seen in Figures 2.5(c) and 2.5(d). These restrictions are there to ensure that one can
always compute an edit-script from a tree mapping.

Most tree differencing algorithms start by producing a tree mapping and then ex-
tracting an edit-script from this. There are a plethora of design decisions on how to
produce a mapping and often the domain of application of the tool will enable one to
impose extra restrictions to attempt to squeeze maximum performance out of the algo-
rithm. The LaDiff [22] tool, for example, works for hierarchically structured trees –
used primarily for LATEX source files – and uses a variant of the LCS to compute match-
ings of elements appearing in the same order, starting at the leaves of the document.
Tools such as XyDiff [23], used to identify changes in XML documents, use hashes to
produce matchings efficiently.
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2.1.3 Shortcomings of Edit-Script Based Approaches

We argue that regardless of the process by which an edit-script is obtained, edit-scripts
have inherent shortcomings when they are used to compare tree structured data. The
first and most striking is that the use of heuristics to compute optimal solutions is un-
avoidable. Consider the tree-edit-scripts between the following two trees:

Bin

T U

Bin

U T

From an edit distance point of view, their distance is 2. This fact can be witnessed
by two (propositionally) different edit-scripts: both [Cpy Bin ,Del T ,Cpy U , Ins T] and
[Cpy Bin , Ins U , Cpy T , Del U] transform the target into the destination correctly. Yet,
from a differencing point of view, these two edit-scripts are distinct. Do we care more
about U or T? What if U and T are also trees, but happen to have the same size (so that
inserting one or the other yields edit-scripts with equal costs)? Ultimately, differencing
algorithms that support no swap operation must choose to copy T or U arbitrarily. This
decision is often guided by heuristics, which makes the result of different algorithms
hard to predict and reason about. Moreover, the existence of this type of choice point
inherently slows algorithms down since the algorithmmust decide which tree to copy.

Another issue when dealing with edit-script is that they are type unsafe. It is quite
easy to write an edit-script that produces an ill-formed tree, regardless of the schema.
Even when writing the edit operations in a type-safe way [55] the synchronization of
said changes is not guaranteed to be type-safe [107].

Finally, we must mention the lack of expressivity that comes from edit-scripts, from
the differencing point of view. Consider the trees below,

A Bin

A A

Optimal edit-scripts oblige us to chose between copyingA as the left or the right sub-
tree. There is no possibility to represent duplications, permutations or contractions of
subtrees. Thismeans that a number of common changes, such as refactorings, yield edit-
scripts with a very high cost even though a good part of the information being deleted or
inserted should really have been copied. Even though there exists other edit-distances
that support more edit operations, they are not very useful when adapted to trees. Take
the Damerau-Leveshtein distance [25], which allows for the transposition of adjacent
characters in a string, when instantiated to trees it would only allow for the transposi-
tion of labels that are adjacent in the preorder traversal of the tree.
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Figure 2.6: Two different ways to look at the merge problem.

2.1.4 Synchronizing Changes

When managing local copies of replicated data such as in software version control sys-
tems, one is inevitably faced with the problem of synchronizing [12] ormerging changes
– when an offline machine goes online with new versions, when two changes happened
simultaneously, etc. The synchronizer is responsible for identify what has changed and
reconcile these changes when possible. Most modern synchronizers operate over the
diverging replicas and last common version, without knowledge of the history of the
last common version – these are often denoted state-based synchronizers, as opposed to
operation-based synchronizers, which access the whole history of modifications.

The diff3 [101] tool, for example, is the most widely used synchronizer for textual
data. It is a state-based synchronizer that calls the UNIX diff to compute the differ-
ences between the common ancestor and each diverging replica, then tries to produce
an edit-script that when applied to the common ancestor produces a new file, containing
the union of changes introduced in each individual replica. The algorithm itself has been
studied formally [48] and there are proposals to extend it to tree-shaped data [57, 107].

Generally speaking, synchronization of changes 𝑝 and 𝑞 can be modeled in one of
two ways. Either we produce one change that works on the common ancestor of 𝑝 and
𝑞, as in Figure 2.6(a), or we produce two changes that act directly on the images of 𝑝
and 𝑞, Figure 2.6(b). We often call the former a three-way merge and the later a residual
merge.

Residual merges can pose a few technical challenges. For one, if we want the merge
to form a (term rewritting) residual system [15] we must prove a number of non-trivial
properties. Secondly, they tend to be harder to generalize to 𝑛-ary inputs. They do have
the advantage of enabling one to model merges as pushouts [71], which could provide a
desirable metatheoretical foundation on Category Theory.

Regardless of whether we choose a three-way or residual based approach, any state-
based synchronizer will invariably have to deal with the problem of aligning the changes.
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sum := 0;
for (i in is) {
sum := sum + i;

}

(a) Replica A

res := 0;
for (i in is) {

res := res + i;
}

(b) Common ancestor, O

res := 0;
prod := 1;
for (i in is) {

res := res + i;
prod := prod * i;

}

(c) Replica B

- res := 0;
+ sum := 0;

for (i in is) {
- res := res + i;
+ sum := sum + i;

}

(d) diff O A

res := 0;
+ prod := 1;
for (i in is) {
res := res + i;

+ prod := prod * i;
}

(e) diff O B

Figure 2.7: Two UNIX diff patches that diverge from a common ancestor.

That is, deciding which parts of the replicas are copies from the same piece of informa-
tion in the common ancestor. For example, successfully synchronizing the replicas in
Figure 2.7 depends in recognizing that the insertion of prod := 1; comes after modify-
ing res := 0; to sum := 0;. This fact only becomes evident after we look at the result
of calling the UNIX diff on each diverging replica – the copies in each patch identify
which parts of the replicas are ’the same’.

Figure 2.8 illustrates a run of diff3 in a simple example, borrowed fromKhanna et
al. [48], where a swaps 2, 3 for 4, 5 in the original file but bmoves 3 before 6. In a very sim-
plified way, the first thing that happens if we run diff3 in the inputs (Figure 2.8(a)) is
that diff3will compute the longest common subsequences between the objects, essen-
tially yielding the alignments it needs (Figure 2.8(b)). The next step is to put the copies
side by side and understand which regions are stable or unstable. The stable regions are
those where no replicas changed. In our case, it is on 1, 2 and 6 (Figure 2.8(c)). Finally,
diff3 can decide which changes to propagate and which changes are a conflict. In our
case, the 4, 5 was only changed in one replica, so it is safe to propagate (Figure 2.8(d)).

Different synchronization algorithms will naturally offer slightly different proper-
ties, yet, one that seems to be central to synchronization is locality [48] – which is en-
joyed by diff3. Locality states that well-separated changes of a given object can always
be synchronized without conflicts. In fact, we argue this is the only property we can
expect out of a general purpose generic synchronizer. The reason being that said syn-
chronizer can rely solely on propositional equality of trees and structural disjointness
as the criteria to estabilish changes as synchronizable. Any other criteria would require
knowledge of the semantics of the data under synchronization. It is worth noting that
although “well-separated changes” is difficult to define for an underlying list [48], tree
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a = [1 , 4 , 5 , 2 , 3 , 6]
o = [1 , 2 , 3 , 4 , 5 , 6]
b = [1 , 2 , 4 , 5 , 3 , 6]

(a) inputs

diff o a = [Cpy 1 , Ins 4 , Ins 5 , Cpy 2
, Cpy 3 , Del 4 , Del 5 , Cpy 5]

diff o b = [Cpy 1 , Cpy 2 , Del 3 , Cpy 4
, Cpy 5 , Ins 3 , Cpy 6]

(b) Running diff to produce alignments

a 1 4,5 2 3 6
o 1 2 3,4,5 6
b 1 2 4,5,3 6

(c) diff3 parse of alignments

a 1 4,5 2 3 6
o 1 4,5 2 3,4,5 6
b 1 4,5 2 4,5,3 6

(d) diff3 propagate

Figure 2.8: A simple diff3 run.

shaped data has the advantage of possessing simpler such notions. We often refer to
well-separated changes as disjoint changes.

2.1.5 Literature Review

With some basic knowledge of differencing and edit-distances under our belt, we briefly
look over some of the relevant literature on the topic of tree differencing. Tai [102] was
the first to consider edit distance between two trees, followed Zhang and Sasha [114].
More refined algorithms for computing the distance between two trees have been pre-
sented by Klein et al. [50] and Dulucq et al. [28]. Finally, Demaine et al. [27] presents an
algorithm of cubic complexity and proves this is the best possible worst case. Zhang and
Sasha’s algorithm is still preferred in many pratical scenarios, though. The more recent
RTED [87] algorithm maintains the cubic worst case complexity and is comparable or
faster than the other algorithms, rendering it the standard choice for computing tree edit
distance based on the classic edit operations. In the case of unordered trees the best we
can rely on are approximations [8, 9] since the problem is NP-hard [115].

Tree edit distance has seen multidisciplinary interest. From Computational Biology,
where it is used to align phylogentic trees and compare RNA secondary structures [2,
42, 67], all the way to intelligent tutoring systems where we must provide good hints
to students’ solutions to exercises by understanding how far they are from the correct
solutions [85, 96]. In fact, from the tree edit distance point of view, we are only concerned
with a number, the distance between objects, quantifying how similar they are.

From the perspective of tree differencing, on the other hand, we focus mainly on the
edit operations andmight want to perform computations such as composition andmerg-
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ing of differences. Naturally, however, the choice of edit operations heavily influences
the complexity of the diff algorithm. Allowing a move operation already renders string
differencing NP-complete [99]. Tree differencing algorithms, therefore, tend to run ap-
proximations of the best edit distance. Most of them still suffer from at least quadratic
time complexity, which is prohibitive for most pratical applications or are defined for
domain specific data, such as the latexdiff [104] tool. A number of algorithms spe-
cific for XML and imposing different requirements on the schemas have been devel-
opped [88]. LaDiff [22], for example, imposes restrictions on the hierarchy between
labels, it is implemented into the DiffXML [78] and GumTree [31] tools. LaDiff is re-
sponsible for computing an edit-script given tree matchings. A notable mention is the
XyDiff [23], which uses hashes to compute matchings and, therefore, supports move
operations maintaining almost linear complexity. This is the closest to our approach in
Chapter 5. The RWS-Diff [34] uses approximatematchings by finding trees that are not
necessarily equal but similar. This yields a robust algorithm, which is practical. Most
of these techniques recycle list differencing and can be seen as some form of string dif-
ferencing over the preorder (or postorder) traversal of trees, which has quadratic upper
bound [40]. A careful encoding of the edit operations enables one to have edit-scripts
that are guaranteed to preserve the schema of the data under manipulation [55].

When it comes to synchronization of changes [12], the algorithms are heavily depen-
dent on the representation of objects and edit-scripts imposed by the underlying differ-
encing algorithm. The diff3 [101] tool, developed by Randy Smith in 1988, is still the
most widely used synchronizer. It has received a formal treatment and specification [48]
posterior to its development. Algorithms for synchronizing changes over tree shaped
data include3DM [57]whichmerges changes overXMLdocuments, Harmony [35], which
works internally with unordered edge-labelled trees and is focused primarily on un-
ordered containers and, finally, FCDP [54], which uses XML as its internal represen-
tation.

Also worth mentioning is the generalization of diff3 to tree structured data us-
ing well-typed approaches due to Vassena [107], which supports that typed edit-scripts
might not be the best underlying framework for this, as one needs to manually type-
check the resulting edit-scripts.

Besides source-code differencing there is patch inference and generation tools. Some
infer patches fromhuman created data [49], whereas other, such as Coccinelle [6, 86],
receive as input a number of diffs, 𝑃0,⋯ , 𝑃𝑛, that come from differencing many source
and target files, 𝑃𝑖 = diff𝑠𝑖 𝑡𝑖 . The objective then is to infer a common transformation
that was applied everywhere. One can think of determining the common denominator
of 𝑃0,⋯ , 𝑃𝑛. Refactoring and Rewritting Tools [68, 62] must also be mentioned. Some of
these tools define each supported languageAST separately [20, 51], whereas others [106]
support a universal approach similar to S-expressions. They identify only parentheses,
braces and brackets and hence, can be applied to a plethora of programming languages
out-of-the-box.
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2.2 Generic Programming

We would like to consider richer datatypes than lines-of-text, without having to define
separatediff functions for each of them. Datatype-generic programming provides amech-
anism for writing functions by induction on the structure of algebraic datatypes [38]. A
widely used example is the deriving mechanism in Haskell, which frees the program-
mer from writing repetitive functions such as equality [63]. A vast range of approaches
are available as preprocessors, language extensions, or libraries for Haskell [95, 60].

The core idea behind generic programming is the fact that a number of datatypes can
be described in a uniform fashion. Hence, if a programmer were to write programs that
work over this uniform representation, these programs would immediately work over
a variety of datatypes. In this section we look into two modern approaches to generic
programming which are widely used, then discuss their design space and drawbacks.

2.2.1 GHC Generics

The GHC.Generics [59] library, which comes bundled with GHC since version 7.2,
defines the representation of datatypes in terms of uniform pattern functors. Consider
the following datatype of binary trees with data stored in their leaves:

data Bin a = Leaf a ∣ Bin (Bin a) (Bin a)

A value of type Bin a consists of a choice between two constructors. For the first
choice, it also contains a value of type a whereas for the second it contains two subtrees
as children. This means that the Bin a type is isomorphic to Either a (Bin a , Bin a).
Different libraries differ on how they define their underlying representations. The rep-
resentation of Bin a in terms of pattern functors is written as:

Rep (Bin a) = K1 R a ∶+∶ (K1 R (Bin a) ∶∗∶ K1 R (Bin a))

The Rep (Bin a) above is a direct translation of Either a (Bin a , Bin a), but using
the combinators provided by GHC.Generics. In addition, we also have two conversion
functions from ∶∶ a→ Rep a and to ∶∶ Rep a→ awhich form an isomorphism between
Bin a and Rep (Bin a). The interface ties everything under a typeclass:

class Generic a where
type Rep a ∶∶ ∗
from ∶∶ a → Rep a
to ∶∶ Rep a→ a



BACKGROUND 21

size (Bin (Leaf 1) (Leaf 2))
= gsize (fromgen (Bin (Leaf 1) (Leaf 2)))
= gsize (R1 (K1 (Leaf 1) ∶∗∶ K1 (Leaf 2)))
= gsize (K1 (Leaf 1)) + gsize (K1 (Leaf 2))
= size (Leaf 1) + size (Leaf 2)
= gsize (fromgen (Leaf 1)) + gsize (fromgen (Leaf 2))
= gsize (L1 (K1 1)) + gsize (L1 (K1 2))
= size (1 ∶∶ Int) + size (2 ∶∶ Int)

Figure 2.9: Reduction of size (Bin (Leaf 1) (Leaf 2)).

Defining a generic function is done in two steps. First, we define a class that exposes
the function for arbitrary types, in our case, size, which we implement for any type via
gsize:

class Size (a ∶∶ ∗) where
size ∶∶ a→ Int

instance (Size a) ⇒ Size (Bin a) where
size = gsize ∘ fromgen

Next we define the gsize function that operates on the level of the representation
of datatypes. We have to use another class and the instance mechanism to encode a
definition by induction on representations:

class GSize (rep ∶∶ ∗ → ∗) where
gsize ∶∶ rep x→ Int

instance (GSize f , GSize g) ⇒ GSize (f ∶∗∶ g) where
gsize (f ∶∗∶ g) = gsize f + gsize g

instance (GSize f , GSize g) ⇒ GSize (f ∶+∶ g) where
gsize (L1 f) = gsize f
gsize (R1 g) = gsize g

We still have to handle the cases where wemight have an arbitrary type in a position,
modeled by the constant functor K1. We require an instance of Size so we can success-
fully tie the recursive knot.

instance (Size x) ⇒ GSize (K1 R x) where
gsize (K1 x) = size x
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To finish the description of the generic size, we also need instances for the unit, void
andmetadata pattern functors, calledU1, V1, andM1 respectively. TheirGSize is rather
uninteresting, so we omit them for the sake of conciseness.

This technique ofmutually recursive classes is quite specific to the GHC.Generics
flavor of generic programming. Figure 2.9 illustrates how the compiler goes about choos-
ing instances for computing size (Bin (Leaf 1) (Leaf 2)). In the end, we just need an
instance for Size Int to compute the final result. Literals of type Int illustrate what we of-
ten call opaque types: those types that constitute the base of the universe and are opaque
to the representation language. This approach to generic programming was also used as
the basis for bringing generic programming to Clean [4], where it was later improved to
support dynamic types and compile-time optimizations, for example.

2.2.2 Explicit Sums of Products

The other side of the coin is restricting the shape of the generic values to follow a sums-
of-products format. This was first done by Löh and de Vries[26] in the generics-sop
library. The main difference is in the introduction of Codes, that limit the structure of
representations. If we had access to a representation of the sum-of-products structure of
Bin, we could have defined our gsize function following an informal description: sum
up the sizes of the fields inside a value, ignoring the constructor.

Unlike GHC.Generics, the representation of values is defined by induction on the
code of a datatype, this code being a type-level list of lists of kind ∗, whose semantics
is consonant to a formula in disjunctive normal form. The outer list is interpreted as
a sum and each of the inner lists as a product. This section provides an overview of
generic-sop as required to understand the techniques we use in Chapter 3. We refer
the reader to the original paper [26] for a more comprehensive explanation.

Using a sum-of-products approach one could write the same gsize function shown in
Section 2.2.1 as easily as:

gsize ∶∶ (Genericsop a) ⇒ a→ Int
gsize = sum ∘ elim (map size) ∘ fromsop

Ignoring the details of gsize for a moment, let us focus just on its high level structure.
Remembering that from now returns a sum-of-products view over the data, we are using
an eliminator, elim, to apply a function to the fields of the constructor used to create a
value of type a. This eliminator then applies map size to the fields of the constructor,
returning something akin to a [Int]. We then sum them up to obtain the final size.

Codes consist of a type-level list of lists. The outer list represents the constructors
of a type, and will be interpreted as a sum, whereas the inner lists are interpreted as
the fields of the respective constructors, interpreted as products. The ′ sign in the code
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below marks the list as operating at the type-level, as opposed to term-level lists which
exist at run-time. This is an example of Haskell’s datatype promotion [113].

type family Codesop (a ∶∶ ∗) ∶∶ ′[′[∗]]
type instance Codesop (Bin a) = ′[′[a] , ′[Bin a , Bin a]]

The representation is then defined by induction on Codesop by the means of gener-
alized 𝑛-ary sums, NS, and 𝑛-ary products, NP. With a slight abuse of notation, one can
view NS and NP through the lens of the following type isomorphisms:

NS f [k_1 , k_2 , … ] ≡ f k_1 ∶+∶ (f k_2 ∶+∶ … )
NP f [k_1 , k_2 , … ] ≡ f k_1 ∶∗∶ (f k_2 ∶∗∶ … )

If we define Repsop to be NS (NP (K1 R)), where data K1 R a = K1 a is borrowed
from GHC.Generics, we get exactly the representation that GHC.Generics issues for
Bin a. Nevertheless, note how we already need the parameter f to pass NP to NS here.

Repsop (Bin a) ≡ NS (NP (K1 R)) (Codesop (Bin a))
≡ K1 R a ∶+∶ (K1 R (Bin a) ∶∗∶ K1 R (Bin a))
≡ Repgen (Bin a)

It makes no sense to go through the trouble of adding the explicit sums-of-products
structure to forget this information in the representation. Instead of piggybacking on
pattern functors, we define NS and NP from scratch using GADTs [111]. By pattern
matching on the values of NS and NP we inform the type checker of the structure of
Codesop.

data NS ∶∶ (k→ ∗) → [k] → ∗ where
Here ∶∶ f k → NS f (k ′∶ ks)
There ∶∶ NS f ks→ NS f (k ′∶ ks)

data NP ∶∶ (k→ ∗) → [k] → ∗ where
𝜖 ∶∶ NP f ′[ ]
(×) ∶∶ f x→ NP f xs→ NP f (x ′∶ xs)

Finally, since our atoms are of kind ∗, we can use the identity functor, I, to interpret
those and define the final representation of values of a type a under the SOP view:

type Repsop a = NS (NP I) (Codesop a)
newtype I (a ∶∶ ∗) = I {unI ∶∶ a}

To support the claim that one can define general combinators for workingwith these
representations, let us look at elim andmap, used to implement the gsize function in the
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gsize ∶∶ (Genericsop a , All2 Size (Codesop a)) ⇒ a→ Int
gsize = sum ∘ hcollapse

∘ hcmap (Proxy ∶∶ Proxy Size) (mapIK size) ∘ fromsop

Figure 2.10: Definition of gsize in the generics-sop style.

beginning of the section. The elim function just drops the constructor index and applies
f, whereas themap applies f to all elements of a product.

elim ∶∶ (∀ k . f k→ a) → NS f ks→ a
elim f (Here x) = f x
elim f (There x) = elim f x
map ∶∶ (∀ k . f k→ a) → NP f ks→ [a]
map f 𝜖 = [ ]
map f (x × xs) = f x ∶map f xs

Reflecting on the current definition of size and comparing it to the GHC.Generics
implementation of size, we see two improvements: (A) we need one fewer typeclass,
GSize, and, (B) the definition is combinator-based. Considering that the generated pat-
tern functor representation of a Haskell datatype will already be in a sums-of-products,
we do not lose anything by enforcing this structure.

There are still downsides to this approach. A notable one is the need to carry con-
straints around: the actual gsize written with the generics-sop library and no sugar
is shown in Figure 2.10.

Where hcollapse and hcmap are analogous to the elim andmap combinators defined
above. TheAll2 Size (Codesop a) constraint tells the compiler that all of the types serving
as atoms forCodesop a are an instance of Size. Here,All2 Size (Codesop (Bin a)) expands
to (Size a , Size (Bin a)). The Size constraint also has to be passed around with a Proxy
for the eliminator of the 𝑛-ary sum. This is a direct consequence of a shallow encoding:
since we only unfold one layer of recursion at a time, we have to carry proofs that the
recursive arguments can also be translated to a generic representation. We can relieve
this burden by recording, explicitly, which fields of a constructor are recursive or not,
which is exactly how we start to shape generics-mrsop in Chapter 3.

2.2.3 Discussion

Most other generic programming libraries follow a similar pattern of defining thedescrip-
tion of a datatype in the provided uniform language by some type-level information, and
two functions witnessing an isomorphism. The most important feature of such a library
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Pattern Functors Codes

No Explicit Recursion GHC.Generics generics-sop
Simple Recursion regular
Mutual Recursion multirec

Figure 2.11: Spectrum of static generic programming libraries.

is how this description is encoded andwhich primitive operations are used for construct-
ing such encodings. Some libraries, mainly deriving from the SYB approach [53, 77],
use theData and Typeable typeclasses instead of static type-level information to provide
generic functionality – these are a completely different strand ofwork fromwhatwe seek.
The main approaches that rely on type-level representations of datatypes are shown in
Figure 2.11. These can be compared in their treatment of recursion and on their choice
of type-level combinators used to represent generic values.

Recursion Style. There are two ways to define the representation of values. Either
we place explicit information about which fields of the constructors of the datatype in
question are recursive or we do not.

Ifwe donotmark recursion explicitly, shallow encodings are the easier option, where
only one layer of the value is turned into a generic form by a call to from. This is the kind
of representation we get from GHC.Generics. The other side of the spectrum would
be the deep representation, in which the entire value is turned into the representation
that the generic library provides in one go.

Marking the recursion explicitly, like inregular [82], allows one to choose between
shallow and deep encodings at will. These representations are usually more involved as
they need an extra mechanism to represent recursion. In the Bin example, the descrip-
tion of the Bin constructor changes from “this constructor has two fields of the Bin a
type” to “this constructor has two fields in which you recurse”. Therefore, a deep encod-
ing requires some explicit least fixpoint combinator – usually called Fix in Haskell.

Depending on the use case, a shallow representation might be more efficient if only
part of the value needs to be inspected. On the other hand, deep representations are
sometimes easier to use, since the conversion is performed in one go, and afterwards
one only has to work with the constructs from the generic library.

The fact that we mark explicitly when recursion takes place in a datatype gives
some additional insight into the description. Some functions really need the informa-
tion about which fields of a constructor are recursive and which are not, like the generic
map and the generic Zipper. This additional power has also been used to define regular
expressions over Haskell datatypes [97], for example.
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Pattern Functors versus Codes. Most generic programming libraries build their
type-level descriptions out of three basic combinators: (1) constants, which indicate a
type is atomic and should not be expanded further; (2) products (usually written as ∶∗∶)
which are used to build tuples; and (3) sums (usually written as ∶+∶) which encode
the choice between constructors. The Rep (Bin a) shown before is expressed in this
form. Note, however, that there is no restriction on how these can be combined. These
combinators are usually referred to as pattern functors. The pattern functor-based li-
braries are too permissive though, for instance, K1 R Int ∶∗∶Maybe is a perfectly valid
GHC.Generics pattern functor but will break generic functions, i.e., Maybe is not a
combinator.

In practice, one can always use a sum of products to represent a datatype – a sum
to express the choice of constructor, and within each constructor a product to declare
which fields you have. The generic-sop library [26] explicitly uses a list of lists of
types, the outer one representing the sum and each inner one thought of as products.

Codesop (Bin a) = ′[′[a] , ′[Bin a , Bin a]]

The shape of this description follows more closely the shape of Haskell datatypes,
and make it easier to implement generic functionality.

Note how the codes are different from the the representation, the latter being defined
by induction on the former. This is quite a subtle point and it is common to see both
terms being used interchangeably. Here, the representation ismapping the codes, of kind
′[ ′[∗]], into ∗. The code can be seen as the format that the representation must adhere
to. Previously, in the pattern functor approach, the representation was not guaranteed
to have a certain structure. The expressivity of the language of codes is proportional to
the expressivity of the combinators the library can provide.



33333333333333333333333333333333333333333333333333333333333333333
Generic Programming with
Mutually Recursive Types
The syntax of many programming languages is expressed through a mutually recursive
family of datatypes. Before writing a generic differencing algorithm we need to be able
to program generically over mutually recursive families of datatypes. Consider Haskell
itself, a do block constructs an expression, even though the do block itself is composed
by a list of statements which may include expressions.

data Expr = ... ∣ Do [Stmt] ∣ ...
data Stmt = Assign Var Expr ∣ Let Var Expr

Another example is found in HTML and XML documents. These are easily described
by a Rose tree, which albeit being a nested type [17], is naturally encoded in themutually
recursive family of datatypes below.

data Rose a = Fork a [Rose a]
data [ ] a = [ ] ∣ a ∶ [a]

Working with generic mutually recursive families in Haskell, however, is a non-
trivial task. The best solution at the time of writing is the multirec [112] library, which
is unfortunately unfit for writing complex programs – the lack of a combinator-based ap-
proach to generic programming and the pattern functor (Section 2.2.1) approach makes
it hard to write involved algorithms.
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This meant we had to engineer new generic programming libraries to tackle the
added complexity of mutual recursion. We have devised two different ways of doing
so. First, we wrote the generics-mrsop [75] library, which combines a combinator
based (Section 2.2.2) approach to generic programming with mutually recursive types.
In fact, generics-mrsop lies in the intersection of multirec and the more modern
generics-sop [26]. It is worth noting that neither of the aforementioned libraries
compete with our work. We extend both in orthogonal directions, resulting in a new
design altogether, that takes advantage of some modern Haskell extensions which the
authors of the previous work could not employ.

The generics-mrsop library, Section 3.1, was a conceptual success. It enabled us
to prototype and tweak the algorithms discussed in Chapter 4 and Chapter 5 with ease.
Yet, amemory leak in theGlasgowHaskell Compiler1made it unusable for encoding real
programming languages such as those in the language-python or language-java
packages. This frustrating outcomemeant that a different approach – which did not rely
as heavily on type families – was necessary to look at real-world software version control
conflict data.

It turns out thatwe can sacrifice the sums-of-products structure of generics-mrsop,
significantly decreasing the reliance of type families, while maintaining a combinator-
based approach. This would still enables us to write the algorithms underlying the
hdiff tool (Chapter 5). This lead us to develop the generics-simplistic library,
Section 3.2, that still maintains a list of the types that belong in the family, but does not
record their internal sum-of-products structure.

This chapter, then, is concerned with explaining our work extending the existing
generic programming capabilities of Haskell to support mutually recursive types. We
introduce two conceptually different approaches, but with similar expressivity. In Sec-
tion 3.1 we explore the generics-mrsop library. With its ability of representing ex-
plicit sums of products we are able to illustrate the gdiff [55] differencing algorithm,
which follows the classical tree-edit distance but in a typed fashion. Then, in Section 3.2,
we explore the generics-simplistic library, which works on the pattern functor
spectrum of generic programming.

3.1 The generics-mrsop library

The generics-mrsop library is an intersection of the multirec and generics-sop
libraries. It uses explicit codes in the sums of products style to guide the representation of
datatypes. This enables a simple explicit fixpoint construction and a variety of recursion
schemes, which makes the development of generic programs fairly straightforward.

1https://gitlab.haskell.org/ghc/ghc/issues/17223 and https://gitlab.haskell.
org/ghc/ghc/issues/14987

https://gitlab.haskell.org/ghc/ghc/issues/17223
https://gitlab.haskell.org/ghc/ghc/issues/14987
https://gitlab.haskell.org/ghc/ghc/issues/14987
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3.1.1 Explicit Fixpoints with Codes

Introducing information about the recursive positions in a type requiresmore expressive
codes than in Section 2.2.2. Where our codes were a list of lists of types, which could
be anything, we now have a list of lists of Atom, which maintains information about
whether a position is recursive or not.

data Atom = I ∣ KInt ∣ …
type family Codefix (a ∶∶ ∗) ∶∶ ′[′[Atom]]
type instance Codefix (Bin Int) = ′[′[KInt] , ′[I , I]]

Here, I is used to mark the recursive positions and KInt , … are codes for a prede-
termined selection of primitive types, which we refer to as opaque types. Favoring the
simplicity of the presentation, we will stick with only hard coded Int as the only opaque
type in the universe. Later on, in Section 3.1.2.1, we parameterize the whole develop-
ment by the choice of opaque types.

We can no longer represent polymorphic types in this universe – the codes them-
selves are not polymorphic. Back in Section 2.2.2 we have defined Codesop (Bin a), and
this would work for any a. The lack of polymorphism might seem like a disadvantage
at first, but if we are interested in deep generic representations, it is actually an advan-
tage, as it allows us to have a deep conversion for free as we do not need to carryGeneric
constraints around. That is, say we want to deeply convert a value of type Bin a to its
generic representation polymorphically on a. We can only do so if we have access to the
Codesop a, which comes from knowing Generic a. By specifying the types involved be-
forehand, we are able to get by without having to carry all of the constraints we needed
in, for instance, gsize at the end of Section 2.2.2. The main benefit is in the simplicity of
combinators we will define in Section 3.1.2.2.

The Repfix datatype is similar to the Repsop, but uses an additional layer that maps
an Atom into ∗, denoted NA. Since an atom can be either an opaque type, known stati-
cally, or some type that must be placed in a recursive position later on, we need just one
parameter in NA.

data NA ∶∶ ∗ → Atom→ ∗ where
NA𝐼 ∶∶ x → NA x I
NA𝐾 ∶∶ Int→ NA x KInt

newtype Repfix a x = Rep {unRep ∶∶ NS (NP (NA x)) (Codefix a)}

The Genericfix typeclass, below, witnesses the isomorphism between ordinary types
and their deep sums-of-products representation. Similarly to the other generic type-
classes out there, it contains just the familiar tofix and fromfix components. We illustrate
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part of the instance that witnesses that Bin Int has a generic representation below. We
omit the tofix function as it is the opposite of fromfix.

class Genericfix a where
fromfix ∶∶ a→ Repfix a a
tofix ∶∶ Repfix a a→ a

instance Genericfix (Bin Int) where
fromfix (Leaf x) = Rep ( Here (NA𝐾 x × 𝜖))
fromfix (Bin l r) = Rep (There (Here (NA𝐼 l × NA𝐼 r × 𝜖)))

It is an interesting exercise to implement the Functor instance for (Repfix a) – where
it can be seen that we were only able to lift it to a functor by recording the information
about the recursive positions. Otherwise, there would be no easy way of knowing where
to apply f when defining fmap f.

Nevertheless, working directly with Repfix is hard – we need to pattern match on
There and Here, whereas we actually want to have the notion of constructor for the
generic setting too! The main advantage of the sum-of-products structure is to allow
a user to pattern match on generic representations just like they would on values of the
original type, contrasting with GHC.Generics. One can precisely state that a value of
a representation is composed by a choice of constructor and its respective product of
fields by the View type. This view pattern [108, 66] is common in dependently typed
programming.

data Nat = Z ∣ S Nat
data View ∶∶ [[Atom]] → ∗ → ∗ where
Tag ∶∶ Constr n t→ NP (NA x) (Lkup t n) → View t x

A value of Constr n sum is a proof that n is a valid constructor for sum, stating that
n < length sum. Lkup performs list lookup at the type-level. To improve type error
messages, we generate a TypeError whenever we reach a given index n that is out of
bounds. Interestingly, our design guarantees that this case is never reached by Constr.

data Constr ∶∶ Nat→ [k] → ∗ where
CZ ∶∶ Constr Z (x ∶ xs)
CS ∶∶ Constr n xs→ Constr (S n) (x ∶ xs)

type family Lkup (ls ∶∶ [k]) (n ∶∶ Nat) ∶∶ k where
Lkup ′[ ] = TypeError “Index out of bounds”
Lkup (x ∶ xs) ′Z = x
Lkup (x ∶ xs) (′S n) = Lkup xs n

With the help of sop and inj, declared below, we are able to pattern match and inject
into generic values. Unfortunately, matching on Tag directly can be cumbersome, but
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crush ∶∶ (Genericfix a) ⇒ (∀ x . Int→ b) → ([b] → b) → a→ b
crush k cat = crushFix ∘ deepFrom
where crushFix ∶∶ Fix (Repfix a) → b

crushFix = cat ∘ elimNS (elimNP go) ∘ unFix
go (NA𝐼 x) = crushFix x
go (NA𝐾 i) = k i

Figure 3.1: Generic crush combinator.

we can always use pattern synonyms [90] to circumvent that. For example, the synonyms
below describe the constructors Bin and Leaf.

pattern (Pat Leaf) x = Tag CZ (NA𝐾 x × 𝜖)
pattern (Pat Bin) l r = Tag (CS CZ) (NA𝐼 l × NA𝐼 r × 𝜖)
inj ∶∶ View sop x→ Repfix sop x
sop ∶∶ Repfix sop x→ View sop x

Having the core of the sums-of-products universe defined, we turn our attention to
the representation of recursion through the Fix datatype. This enables us to convert
values to their deep representation.

Converting to a deep representation. The fromfix function still returns a shal-
low representation. But by constructing the least fixpoint ofRepfix awe can easily obtain
the deep encoding for free, by recursively translating each layer of the shallow encoding.

newtype Fix f = Fix {unFix ∶∶ f (Fix f)}
deepFrom ∶∶ (Genericfix a) ⇒ a→ Fix (Repfix a)
deepFrom = Fix ∘ fmap deepFrom ∘ fromfix

So far, we handle the same class of types as the regular [82] library, but we require
the representation to follow a sums of products structure by themeans ofCodefix. Those
types are guaranteed to have an initial algebra, and indeed, the generic catamorphism is
defined as expected:

fold ∶∶ (Repfix a b→ b) → Fix (Repfix a) → b
fold f = f ∘ fmap (fold f) ∘ unFix

Some functions may consume a value and produce a single value, but do not need
the full expressivity of fold. Instead, if we know how to consume the opaque types and
combine those results, we can consume anyGenericfix type using crush, which is defined
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in Figure 3.1. The behavior of crush is defined by (1) how to turn atoms into the output
type b – in this case we only have integer atoms, and thus we require an Int→ b function
– and (2) how to combine the values bubbling up from each member of a product.

Finally, we come full circle to our running gsize example as it was promised in the
introduction. This is noticeably the smallest implementation so far, and very straight to
the point.

gsize ∶∶ (Genericfix a) ⇒ a→ Int
gsize = crush (const 1) sum

At this point we have combined the insight from the regular library of keeping
track of recursive positions with the convenience of the generics-sop for enforcing
a specific normal form on representations. By doing so, we were able to provide a deep
encoding for free. This essentially frees us from the burden of maintaining constraints.
Compare the gsize abovewith its generics-sop variation, in Figure 2.10. The informa-
tion about the recursive position allows us to write concise combinators, such as crush,
and a convenient View type for easy generic pattern matching. The only thing keeping
us from handling larger applications is the limited form of recursion.

3.1.2 Mutual Recursion

Conceptually, going from regular types (Section 3.1.1) to mutually recursive families is
simple. We just need to reference not only one type variable, but one for each element
in the family. This is usually [58, 5] done by adding an index to the recursive positions
to represents eachmember of the family. As a running example, we use the familiar rose
tree family.

data Rose a = Fork a [Rose a]
data [ ] a = [ ] ∣ a ∶ [a]

The previously introducedCodefix, Section 3.1.1, is not expressive enough to describe
this datatype. In particular, when we try to write Codefix (Rose Int), there is no imme-
diately recursive appearance of Rose itself, so we cannot use the atom I in that position.
Furthermore [Rose a] is not an opaque type either, so we cannot use any of the other
combinators provided by Atom. We would like to record information about Rose Int
referring to itself via another datatype.

Our solution is to move from codes of datatypes to codes for families of datatypes.
We no longer talk about Codefix (Rose Int) or Codefix [Rose Int] in isolation. Codes only
make sense within a family, that is, a list of types. Hence, we talk about the codes of the
two types in the family: Codemrec

′[Rose Int , [Rose Int]]. Then we extend the language
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of Atoms by appending to I a natural number which specifies the member of the family
to recurse into:

data Atom = I Nat ∣ KInt ∣ …

The code of this recursive family of datatypes can be described as:

type FamRose = ′[Rose Int , [Rose Int]]
type Codemrec FamRose = ′[′[′[KInt , I (S Z)]]

, ′[′[ ] , ′[I Z , I (S Z)]]
]

Let us have a closer look at the code for Rose Int, which appears in the first place
in the list. There is only one constructor which has an Int field, represented by KInt,
and another in which we recurse via the second member of our family (since lists are
0-indexed, we represent this by S Z). Similarly, the second constructor of [Rose Int]
points back to both Rose Int using I Z and to [Rose Int] itself via I (S Z).

Having settled on the definition ofAtom, we nowneed to adaptNA to the newAtoms.
To interpret any Atom into ∗, we need a way assign values to the different recursive
positions. This information is given by an additional type parameter 𝜑 thatmaps natural
numbers into types.

data NA ∶∶ (Nat→ ∗) → Atom→ ∗ where
NA𝐼 ∶∶ 𝜑 n→ NA 𝜑 (I n)
NA𝐾 ∶∶ Int → NA 𝜑 KInt

This additional 𝜑 naturally bubbles up to Repmrec.

type Repmrec (𝜑 ∶∶ Nat→ ∗) (c ∶∶ [[Atom]]) = NS (NP (NA 𝜑)) c

The only piece missing here is tying the recursive knot. If we want our representa-
tion to describe a family of datatypes, the obvious choice for 𝜑 n is to look up the type at
index n in FamRose. In fact, we are simply performing a type-level lookup in the family,
so we can reuse the Lkup from Section 3.1.1.

In principle, this is enough to provide a ground representation for the family of types.
Let fam be a family of types, like ′[Rose Int , [Rose Int]], and codes the corresponding
list of codes. Then the representation of the type at index ix in the list fam is given by:

Repmrec (Lkup fam) (Lkup codes ix)
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This definition states that to obtain the representation of the type at index ix, we first
lookup its code. Then, in the recursive positions we interpret each I n by looking up the
type at that index in the original family. This gives us a shallow representation.

Unfortunately, Haskell only allows saturated, that is, fully-applied type families. Hence,
we cannot partially apply Lkup like we did it in the example above. As a result, we need
to introduce an intermediate datatype El,

data El ∶∶ [∗] → Nat→ ∗ where
El ∶∶ Lkup fam ix→ El fam ix

The representation of the family fam at index ix is thus given in terms of El, which
can be partially applied, Repmrec (El fam) (Lkup codes ix). We only need to use El in the
first argument, because that is the position in which we require partial application. The
second position has Lkup already fully-applied, and can stay as is.

We still have to relate a family of types to their respective codes. As in other generic
programming approaches, we want tomake their relation explicit. The Family typeclass
below realizes this relation, and introduces functions to perform the conversion between
our representation and the actual types. Using El here spares us from using a proxy for
fam in frommrec and tomrec:

class Family (fam ∶∶ [∗]) (codes ∶∶ [[[Atom]]]) where
frommrec ∶∶ SNat ix→ El fam ix→ Repmrec (El fam) (Lkup codes ix)
tomrec ∶∶ SNat ix→ Repmrec (El fam) (Lkup codes ix) → El fam ix

One of the differences between other approaches and ours is that we do not use
an associated type to define the codes for the family fam. This path is that it alleviates
the burden of writing the longer Codemrec fam every time we want to refer to codes.
Furthermore, there are types like lists which appear in many different families, and in
that case it makes sense to speak about a relation instead of a function.

Since frommrec and tomrec operate on families, we have to specify how to translate
each of the members of the family to and from their generic representation. This transla-
tion needs to know the index of the datatype we are converting between in each case,
hence the additional singleton SNat ix parameter. Pattern matching on this single-
ton [29] type informs the compiler about the shape of the Nat index. Its definition is:

data SNat (n ∶∶ Nat) where
SZ ∶∶ SNat ′Z
SS ∶∶ SNat n→ SNat (′S n)



GENERIC PROGRAMMINGWITHMUTUALLY RECURSIVE TYPES 35

The SNat datatype, in turn, enables us to write the definition of frommrec for the
mutually recursive family of rose trees.

-- First type in the family
frommrec SZ (El (Fork x ch)) = Rep (Here (NA𝐾 x × NA𝐼 ch × 𝜖))
-- Second type in the family
frommrec (SS SZ) (El [ ]) = Rep ( Here 𝜖))
frommrec (SS SZ) (El (x ∶ xs)) = Rep (There (Here (NA𝐼 x × NA𝐼 xs × 𝜖)))

By pattern matching on the index, the compiler knows which family member to ex-
pect as a second argument. This then allows the patternmatching on theEl to typecheck.

The limitations of the Haskell type system lead us to introduce El as an intermedi-
ate datatype. Our frommrec function does not take a member of the family directly, but
an El-wrapped one. However, to construct that value, El needs to know its parameters,
which amounts to knowing the family we are embedding our type into and the index
in that family. Those values are not immediately obvious, but we can use Haskell’s vis-
ible type application [30] to work around it. The into function injects a value into the
corresponding El:

into ∶∶ ∀ fam ty ix . (ix ∼ Idx ty fam , Lkup fam ix ∼ ty) ⇒ ty→ El fam ix
into = El
intoRose ∶∶ Rose Int→ El FamRose ′Z
intoRose = into @FamRose

Idx, here, is a closed type family implementing the inverse of Lkup, that is, obtaining
the index of the type ty in the list fam. Using this function we can turn a [Rose Int] into
its generic representation by writing frommrec ∘ into @FamRose. The type application
@FamRose is responsible for fixing the mutually recursive family we are working with,
which allows the type checker to reduce all the constraints andhappily inject the element
into El.

Deep representation. In Section 3.1.1 we have described a technique to derive deep
representations from shallow representations. We can play a very similar trick here. The
main difference is the definition of the least fixpoint combinator, which receives an extra
parameter of kind Nat indicating which code to use first:

newtype Fix (codes ∶∶ [[[Atom]]]) (ix ∶∶ Nat)
= Fix {unFix ∶∶ Repmrec (Fix codes) (Lkup codes ix)}

Intuitively, since now we can recurse on different positions, we need to keep track
of the representations for all those positions in the type. This is the job of the codes
argument. Furthermore, our Fix does not represent a single datatype, but rather the



36 3.1 THE GENERICS-MRSOP LIBRARY

whole family. Thus, we need each value to have an additional index to declare on which
element of the family it operates.

As in the previous section, we can obtain the deep representation by iteratively apply-
ing the shallow representation. Earlier we used fmap since the Repfix type was a functor.
Repmrec on the other hand cannot be given a Functor instance, but we can still define a
similar functionmapRec,

mapRep ∶∶ (∀ ix . 𝜑1 ix→ 𝜑2 ix) → Repmrec 𝜑1 c→ Repmrec 𝜑2 c

This signature tells us that if we want to change the 𝜑1 argument in the represen-
tation, we need to provide a natural transformation from 𝜑1 to 𝜑2, that is, a function
which works over each possible index this 𝜑1 can take and does not change this index.
This follows from 𝜑1 having kind Nat→ ∗.

deepFrom ∶∶ Family fam codes ⇒ El fam ix→ Fix (Repmrec codes ix)
deepFrom = Fix ∘mapRec deepFrom ∘ frommrec

Only well-formed representations are accepted. At first glance, it may seem
like theAtom datatype gives toomuch freedom: its I constructor receives a natural num-
ber, but there is no apparent static check that this number refers to an actual mem-
ber of the recursive family we are describing. For example, the list of codes given by
′[ ′[ ′[KInt , I (S (S Z))]]] is accepted by the compiler although it does not represent any
family of datatypes.

A direct solution to this problem is to introduce yet another index, this time in the
Atom datatype, which specifies which indices are allowed. The I constructor is then
refined to take not any natural number, but only those which lie in the range – this is
usually known as Fin n.

data Atom (n ∶∶ Nat) = I (Fin n) ∣ KInt ∣ …

The lack of dependent types makes this approach very hard, in Haskell. We would
need to carry around the inhabitants Fin n and define functionality to manipulate them,
which would greatly hinder the usability of the library.

By looking a bit more closely, we find that we are not losing any type-safety by al-
lowing codes which reference an arbitrary number of recursive positions. Users of our
library are allowed to write the previous ill-defined code, but when trying to write val-
ues of the representation of that code, the Lkup function detects the out-of-bounds index,
raising a type error and preventing the program from compiling in the first place, instead
of crashing at run-time.
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3.1.2.1 Parameterized Opaque Types

Up to this pointwehave consideredAtom to include a predetermined selection of opaque
types, such as Int, each of them represented by one of the constructors other than I. This
is far from ideal, for two conflicting reasons:

a) The choice of opaque types might be too narrow. For example, the user of our
library may decide to use ByteString in their datatypes. Since that type is not cov-
ered by Atom, nor by our generic approach, this implies that generics-mrsop
becomes useless to them.

b) The choice of opaque typesmight be toowide. If we try to encompass any possible
situation, we end up with a huge Atom type. But for a specific use case, we might
be interested only in Ints and Floats. This means we have to worry about possibly
ill-formed representations and pattern matches which should never be reached.

Our solution is to parameterize Atom, giving users the choice of opaque types. For
example, if we only want to deal with numeric opaque types, we can write:

data Atom kon = I Nat ∣ K kon
data NumericK = KInt ∣ KInteger ∣ KFloat
type NumericAtom = Atom NumericK

The representation of codes must be updated to reflect the possibility of choosing
different sets of opaque types. The NA datatype in this final implementation provides
two constructors, one per constructor in Atom. TheNS andNP datatypes do not require
any change.

data NA ∶∶ (kon→ ∗) → (Nat→ ∗) → Atom kon→ ∗ where
NA𝐼 ∶∶ 𝜑 n→ NA 𝜅 𝜑 (I n)
NA𝐾 ∶∶ 𝜅 k → NA 𝜅 𝜑 (K k)

type Repmrec (𝜅 ∶∶ kon→ ∗) (𝜑 ∶∶ Nat→ ∗) (c ∶∶ [[Atom kon]]) = NS (NP (NA 𝜅 𝜑)) c

The NA𝐾 constructor in NA makes use of an additional argument 𝜅. The problem
is that we are defining the code for the set of opaque types by a specific kind, such as
Numeric above. On the other hand, values which appear in a field must have a type
whose kind is ∗. Thus, we require amapping from each of the codes to the actual opaque
type they represent. This is exactly the opaque type interpretation 𝜅. Here is the datatype
interpreting NumericK into ground types:

data NumericI ∶∶ NumericK→ ∗ where
IInt ∶∶ Int → NumericI KInt
IFloat ∶∶ Float→ NumericI KFloat
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class Family (𝜅 ∶∶ kon→ ∗) (fam ∶∶ [∗]) (codes ∶∶ [[[Atom kon]]]) where
frommrec ∶∶ SNat ix→ El fam ix→ Repmrec 𝜅 (El fam) (Lkup codes ix)
tomrec ∶∶ SNat ix→ Repmrec 𝜅 (El fam) (Lkup codes ix) → El fam ix

Figure 3.2: Family typeclass with support for different opaque types.

The last piece of our framework which has to be updated to support different sets
of opaque types is the Family typeclass, as given in Figure 3.2. This typeclass provides
an interesting use case for the new dependent features in Haskell; both 𝜅 and codes are
parameterized by an implicit argument kon which represents the set of opaque types.

We stress that the parametrization over opaque types does notmean that we can use
only closed universes of opaque types. It is possible to provide an open representation
by choosing (∗) – the whole kind of Haskell’s ground types – as argument to Atom. As
a consequence, the interpretation ought to be of kind ∗ → ∗, as given by Value, below.
To use (∗) as an argument to a type, we must enable the TypeInType language exten-
sion [109, 110].

data Value ∶∶ ∗ → ∗ where
Value ∶∶ t→ Value t

3.1.2.2 Selection of Useful Combinators

The advantages or a code based approach to generic programmingbecomes evidentwhen
we look at the generic combinators thatgenerics-mrsop provides. We refer the reader
to the actual documentation for a comprehensive list. Here we look at a selection of use-
ful functions in their full form. Let us start with the bifunctoriality of Repmrec:

bimapRep ∶∶ (∀ k . 𝜅1 k→ 𝜅2 k) → (∀ ix . 𝜑1 ix→ 𝜑2 ix)
→ Repmrec 𝜅1 𝜑1 c→ Repmrec 𝜅2 𝜑2 c

bimapRep fk fI = mapNS (mapNP (mapNA fI fI))

To destruct a Repmrec 𝜅 𝜑 c we need a way for eliminating every recursive position
or opaque type inside the representation and a way of combining these results.

elimRep ∶∶ (∀ k . 𝜅 k→ a) → (∀ ix . 𝜑 ix→ a) → ([a] → b) → Repmrec 𝜅 𝜑 c→ b
elimRep fk fI cat = elimNS cat (elimNP (elimNA fk fI))

Another useful operator, particularly when combined with bimapRep is the zipRep,
that works just like a regular zip. Our zipRep attempts to put two values of a representa-
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geq ∶∶ (EqHO 𝜅 , Family 𝜅 fam codes) ⇒ (∀ k . 𝜅 k→ 𝜅 k→ Bool)
→ El fam ix→ El fam ix→ Bool

geq eqK x y = go (deepFrom x) (deepFrom y)
where go (Fix x) (Fix y)

= maybe False (elimRep (uncurry eqK) (uncurry go) and) $ zipRep x y

Figure 3.3: Generic equality.

tion “side-by-side”, as long as they are constructed with the same injection into the 𝑛-ary
sum, NS.

zipRep ∶∶ Repmrec 𝜅1 𝜑1 c→ Repmrec 𝜅2 𝜑2 c→ Maybe (Repmrec (𝜅1 ∶∗∶ 𝜅2) (𝜑1 ∶∗∶ 𝜑2) c)
zipRep r s = case (sop r , sop s) of
(Tag cr pr , Tag cs ps) → case testEquality cr pr of
Just Refl→ inj cr <$> zipWithNP zipAtom pr ps

We use testEquality from Data.Type.Equality to check for type index equality and
inform the compiler of that fact by matching on Refl.

Finally, we can start assembling these building blocks intomore practical functional-
ity. Figure 3.3 shows the definition of generic equality using generics-mrsop, where
the EqHO typeclass is a lifted version of Eq, for types of kind k→ ∗, defined below. The
library also provide ShowHO, the Show counterpart.

class EqHO (f ∶∶ a→ ∗) where
eqHO ∶∶ ∀ x . f x→ f x→ Bool

Wedecided to provide a custom equality in generics-mrsop for twomain reasons.
Firstly, when we started developing the library the -XQuantifiedConstraints [18]
extension was not completed. Yet, once quantified constraints were available in Haskell
we wrote generics-mrsop-2.2.0 using the extension and defining EqHO f as a syn-
onym to ∀ x ∘ Eq (f x). Developing applications on top of generics-mrsop became
more difficult. The user now would have to reason about and pass around complicated
constraints down to datatypes and auxiliary functions. Moreover, our use case was very
simple, not extracting any of the advantages of quantified constraints. Eventually we
decided to rollback to the lifted EqHO presented above in generics-mrsop-2.3.0.

As presented so far, we have all the necessary tools to encode our first differencing
attempt, shown in Chapter 4 of this thesis. The next sections discusses some aspects that,
albeit not directly required for understanding the remainder of this thesis, are interesting
in their own right and round off the presentation of generics-mrsop as a library.
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3.1.3 Practical Features

The development of thegenerics-mrsop library started primarily to enable us towrite
hdiff (Chapter 5) possible. This was a great expressivity test for our generic program-
ming library and led us to develop overall useful features that, although not novel, make
the adoption of a generic programming library much more likely. This section is a small
tutorial into two important practical features of generics-mrsop and documents the
engineering effort that was put in the library.

3.1.3.1 Template Haskell

Having a convenient and robust way to get the Family instance for a given selection of
datatypes is of paramount importance for the usability of our library. In a real scenario,
a mutually recursive family may consist of many datatypes with dozens of constructors.
Sometimes these datatypes are written with parameters, or come from external libraries.

Our goal here is to automate the generation of Family instances under all those cir-
cumstances using Template Haskell [100]. From the programmers’ point of view, they
only need to call deriveFamilywith the topmost (that is, the first) type of the family. For
example:

data Exp var = …
data Stmt var = …
data Prog var = …
deriveFamily [𝑡|Prog String|]

The deriveFamily takes care of unfolding the (type-level) recursion until it reaches
a fixpoint. In this case, the type synonym FamProgString = ′[Prog String , … ] will
be generated, together with its Family instance. Optionally, one can also pass along a
custom function to decide whether a type should be considered opaque. By default, it
uses a selection of Haskell built-in types as opaque types.

Unfolding the Family The process of deriving a whole mutually recursive family
froma singlemember is conceptually divided into two disjoint processes. First we repeat-
edly unfold all definitions and follow all the recursive paths until we reach a fixpoint. At
that moment we know that we have discovered all the types in the family. Second, we
translate the definition of those types to the format our library expects. During the un-
folding process we keep a key-value map in a Statemonad, keeping track of three things:
the types we have seen; the types we have seen and processed; and the indices of those
within the family.
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Let us illustrate this process in a bit more detail using our running example of a
mutually recursive family and consider what happens within Template Haskell when it
starts unfolding the deriveFamily clause.

data Rose a = Fork a [Rose a]
data [a] = [] ∣ a ∶ [a]
deriveFamily [𝑡|Rose Int|]

The first thing that happens is registering that we have seen the type Rose Int. Since
it is the first type to be discovered, it is assigned index zero within the family. Next we
need to reify the definition of Rose. At this point, we query Template Haskell for the
definition, and we obtain data Rose x = Fork x [Rose x]. Since Rose has kind ∗ → ∗, it
cannot be directly translated – our library only supports ground types, which are those
with kind ∗. But we do not need a generic definition for Rose, we just need the specific
case where x = Int. Essentially, we just apply the reified definition of Rose to Int and
𝛽-reduce it, giving us Fork Int [Rose Int].

The next processing step is looking into the types of the fields of the (single) con-
structor Fork. First we see Int and decide it is an opaque type, say KInt. Second, we see
[Rose Int] and notice it is the first time we see this type. Hence, we register it with a
fresh index, S Z in this case. The final result for Rose Int is ′[ ′[K KInt , I (S Z)]].

We now go into [Rose Int] for processing. Once again we need to perform some
amount of 𝛽-reduction at the type-level before inspecting its fields. The rest of the pro-
cess is the same as that for Rose Int. However, when we encounter the field of type
Rose Int this is already registered, so we just need to use the index Z in that position.

The final step is generating the actual Haskell code from the data obtained in the
previous process. This is a very verbose and mechanical process, whose details we omit.
In short, we generate the necessary type synonyms, pattern synonyms, the Family in-
stance, and metadata information. The generated type synonyms are named after the
topmost type of the family, passed to deriveFamily:

type FamRoseInt = ′[Rose Int , [Rose Int]]
type CodesRoseInt = ′[′[′[K KInt , I (S Z)]] , ′[′[ ] , ′[I Z , I (S Z)]]]

The actual Family instance is exactly as the one shown in Section 3.1.2

instance Family Singl FamRoseInt CodesRoseInt where …
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data DatatypeInfo ∶∶ [[∗]] → ∗ where
ADT ∶∶ ModuleName→ DatatypeName→ NP ConstrInfo cs → DatatypeInfo cs
New ∶∶ ModuleName→ DatatypeName→ ConstrInfo ′[c] → DatatypeInfo ′[′[c]]

data ConstrInfo ∶∶ [∗] → ∗ where
Constructor ∶∶ ConstrName → ConstrInfo xs
Infix ∶∶ ConstrName→ Associativity→ Fixity→ ConstrInfo ′[x , y]
Record ∶∶ ConstrName→ NP FieldInfo xs → ConstrInfo xs

data FieldInfo ∶∶ ∗ → ∗ where
FieldInfo ∶∶ FieldName→ FieldInfo a

class HasDatatypeInfo a where
datatypeInfo ∶∶ proxy a→ DatatypeInfo (Code a)

Figure 3.4: Definitions related to metadata from generics-sop.

3.1.3.2 Metadata

There is one final ingredientmissing tomake generics-mrsop fully usable in practice.
We must maintain the metadata information of our datatypes. This metadata includes
the datatype name, the module where it was defined, and the name of the constructors.
Without this information we would never be able to pretty print the generic code in a
satisfactory way. This includes conversion to semi-structured formats, such as JSON, or
actual pretty printing.

Like in generics-sop [26], having the code for a family of datatypes available al-
lows for a completely separate treatment of metadata. This is yet another advantage
of the sum-of-products approach compared to the more traditional pattern functors. In
fact, our handling of metadata is heavily inspired from generics-sop, somuch so that
we will start by explaining a simplified version of their handling of metadata, and then
outline the differences to our approach.

The general idea is to store the meta information following the sum-of-products
structure of the datatype itself. Instead of data, we keep track of the names of the dif-
ferent parts and other meta information that can be useful. It is advantageous to keep
metadata separate from the generic representation as it would only clutter the definition
of generic functionality. This information is tied to a datatype by means of an additional
typeclass HasDatatypeInfo. Generic functions may now query the metadata by means
of functions like datatypeName, which reflect the type information into the term level.
The definitions are given in Figure 3.4 and follow closely how generics-sop handles
metadata.

Our library uses the same approach to handle metadata. In fact, the code remains
almost unchanged, except for adapting it to the larger universe of datatypes we can now



GENERIC PROGRAMMINGWITHMUTUALLY RECURSIVE TYPES 43

handle. Unlike generic-sop, our list of lists representing the sum-of-products struc-
ture does not contain types of kind ∗, but Atoms. All the types representing metadata at
the type-level must be updated to reflect this new scenario:

data DatatypeInfo ∶∶ [[Atom kon]] → ∗ where …
data ConstrInfo ∶∶ [Atom kon] → ∗ where …
data FieldInfo ∶∶ Atom kon → ∗ where …

As we have discussed above, our library is able to generate codes not only for single
types of kind ∗, like Int or Bool, but also for types which are the result of type-level
applications, such as Rose Int and [Rose Int]. The shape of the metadata information
in DatatypeInfo, a module name plus a datatype name, is not enough to handle these
cases. We replace the uses of ModuleName and DatatypeName in DatatypeInfo by a
richer promoted type TypeName, which can describe applications, as required.

data TypeName = ConT ModuleName DatatypeName ∣ TypeName ∶@∶ TypeName
data DatatypeInfo ∶∶ [[Atom kon]] → ∗ where
ADT ∶∶ TypeName→ NP ConstrInfo cs → DatatypeInfo cs
New ∶∶ TypeName→ ConstrInfo ′[c] → DatatypeInfo ′[′[c]]

An important difference to generics-sop is that the metadata is not defined for a
single type, but for a typewithin a family. This can be seen in the signature ofdatatypeInfo,
which receives proxies for both the family and the type. The type equalities in that sig-
nature reflect the fact that the given type ty is included with index ix within the family
fam. This step is needed to look up the code for the type in the right position of codes.

class (Family 𝜅 fam codes) ⇒ HasDatatypeInfo 𝜅 fam codes ix ∣ fam→ 𝜅 codes where
datatypeInfo ∶∶ (ix ∼ Idx ty fam , Lkup ix fam ∼ ty) ⇒ Proxy fam→ Proxy ty

→ DatatypeInfo (Lkup ix codes)

Template Haskell would generate the instance below for Rose Int:

instance HasDatatypeInfo Singl FamRose CodesRose Z where
datatypeInfo = ADT (ConT “E” “Rose” ∶@∶ ConT “Prelude” “Int”)

$ (Constructor “Fork”) × 𝜖

3.1.4 Example: Well-Typed Classical Tree Differencing

This section, based on the work of Lempsink [55] which originally implemented in the
gdiff library, is the related work that is closest to ours in the sense that it is the only
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typed approach to differencing. The presentation provided here is adapted from Van
Putten’s [92] master thesis and is available as the generics-mrsop-gdiff library.

Next, we discuss how tomake tree edit-scripts (Section 2.1.2) type-safe following the
work of Lempsink [55]. We start by lifting edit-scripts to kind [∗] → [∗] → ∗, which
enables the indexing of the types for the source and destination forests of particular edit-
scripts. Consequently, instead of differencing a list of trees, we will difference an 𝑛-ary
product, NP, indexed by the type of each tree.

type Patchgd 𝜅 codes xs ys = ES 𝜅 codes xs ys
diff ∶∶ (TestEquality 𝜅 , EqHO 𝜅)

⇒ NP (NA 𝜅 (Fix 𝜅 codes)) xs→ NP (NA 𝜅 (Fix 𝜅 codes)) ys
→ Patchgd 𝜅 codes xs ys

One confusing complication is that our edit operations operate over both construc-
tors of the family and opaque values, unlike the untyped version of tree differencing
(Section 2.1.2), where everything is a label. Consequently, writing the edit operations re-
quires a uniform treatment of recursive constructors and opaque values, which is done
by the Cof type, read as constructor-of. This represents the unit of modification of each
edit operation. A value of type Cof 𝜅 codes at tys represents a constructor of atom at,
which expects arguments whose type is NP I tys, for the family codes with opaque types
interpreted by 𝜅. Its definition is given below.

data Cof 𝜅 codes ∶∶ Atom kon→ [Atom kon] → ∗ where
ConstrI ∶∶ (IsNat c , IsNat n)

⇒ Constr (Lkup n codes) c→ ListPrf (Lkup c (Lkup n codes))
→ Cof 𝜅 codes (′I n) (Lkup c (Lkup n codes))

ConstrK ∶∶ 𝜅 k→ Cof 𝜅 codes (′K k) Pnil

We need the ListPrf argument to ConstrI to be able to manipulate the type-level lists
when defining the application function, applyES. But first, we have to define our edit-
scripts. A value of type ES 𝜅 codes xs ys represents a transformation of a value of
NP (NA 𝜅 (Fix 𝜅 codes)) xs into a value of NP (NA 𝜅 (Fix ki codes)) ys. The NP
serves as a list of trees, as is usual for the tree differencing algorithms, but it enables us
to keep track of the type of each individual tree through the index to NP.

data ES 𝜅 codes ∶∶ [Atom kon] → [Atom kon] → ∗ where
ES0 ∶∶ ES 𝜅 codes ′[ ] ′[ ]
Ins ∶∶ Cof 𝜅 codes a t→ ES 𝜅 codes i (t ∶++∶ j) → ES 𝜅 codes i (a ′∶ j)
Del ∶∶ Cof 𝜅 codes a t→ ES 𝜅 codes (t ∶++∶ i) j → ES 𝜅 codes (a ′∶ i) j
Cpy ∶∶ Cof 𝜅 codes a t→ ES 𝜅 codes (t ∶++∶ i) (t ∶++∶ j) → ES 𝜅 codes (a ′∶ i) (a ′∶ j)
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Let us take Ins, for example. Inserting a constructor c ∶∶ t1 → … → tn → ′I ix in
a forest x1 × x2 × … × Nil will take the first n elements of that forest and use them as
arguments to c. This is realized by the insCof function, shown below.

insCof ∶∶ Cof 𝜅 codes a t
→ NP (NA 𝜅 (Fix 𝜅 codes)) (t ∶++∶ xs) → NP (NA 𝜅 (Fix 𝜅 codes)) (a ′∶ xs)

insCof (ConstrK k) xs = NA𝐾 k × xs
insCof (ConstrI c ispoa) xs = let (poa , xs′) = split ispoa xs in NA𝐼 (Fix $ inj c poa) × xs′

The example also showcases the use of the ListPrf present inConstrI, which is neces-
sary to enable us to split the list t∶++∶xs into t and xs. The typechecker needs somemore
information about t, since type families are not injective. The split function has type:

split ∶∶ ListPrf xs→ NP p (xs ∶++∶ ys) → (NP p xs , NP p ys)

The delCof function is dual to insCof, but since we construct aNP indexes over t∶++∶
xs, we need not use the ListPrf argument. Finally, we can assemble the application
function that witnesses the semantics of ES:

applyES ∶∶ (∀ k . Eq (𝜅 k)) ⇒ ES 𝜅 codes xs ys→ PoA 𝜅 (Fix 𝜅 codes) xs
→ Maybe (PoA 𝜅 (Fix 𝜅 codes) ys)

applyES ES0 = Just Nil
applyES (Ins c es) xs = insCof c <$> applyES es xs
applyES (Del c es) xs = delCof c xs >>= applyES es
applyES (Cpy c es) xs = insCof c <$> (delCof c xs >>= applyES es)

3.1.4.1 Discussion

The approach of providing typed edit operations has many nice aspects. It immediately
borrows the existing algorithms andmetatheory and can improve the size of edit-scripts
significantly by being able to provide CpyTree, InsTree and DelTree which copy, insert
and delete entire trees instead of operating on individual constructors. This is possible
because we can look at the type of the edit-script in question – substitute the insertion of
a constructor by InsTreewhenever all of its fields are also comprised solely of insertions.

Although type-safe by construction, which is undoubtedly a plus point, computing
edit-scripts, withmemoization, still takes𝒪(𝑛×𝑚) time, where 𝑛 and𝑚 are the number
of constructors in the source and destination trees. This means this is at least quadratic
in the size of the smaller input, which is not practical for a tool that is supposed to be
run multiple times per commit on large inputs (hundreds to thousands of lines). This
downside is not specific to this approach, but rather quite common for tree differencing
algorithms. They often belong to complexity classes that make them impractical.
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Another downside comes to the surface when we want to look into merging these
edit-scripts. Vassena [107] developed a merging algorithm but notes some difficult set-
backs, mainly due to the heterogeneity of ES. Suppose, for example, we want to merge
p ∶ ES xs ys and q ∶ ES xs zs. This means producing an edit-script r that transforms the
forest xs into some other forest ks. But how can we determine ks here? It is not always
the case that there is a solution. In fact, the merge algorithm [107] for ES might fail
due to conflicting changes or the inability to find a suitable ks. Regardless, the work of
Vassena [107] was of great inspiration for this thesis in showing that there definitely is
a place for type-safe approaches to differencing.

3.2 The generics-simplistic Library

Unfortunately, thegenerics-mrsopuncovered amemory leak in theHaskell compiler
itself when used for large mutually recursive families. The bugs have been reported in
the GHC bug tracker2 but have not been resolved at the time of writing. This means
that if we wish to collect large scale real data for our experiments, we must develop
an alternative approach. The generics-simplistic approach trades the sums-of-
products structure of generics-mrsop for a simpler representation. Consequently,
some generic functions will be more verbose than in generics-mrsop, but we can
handle larger families without running into the aforementioned bugs.

3.2.1 The Simplistic View

The generics-simplistic library can be seen as a layer on top of GHC.Generics to
ease out the definition of new generic functionality. The pattern functor approach used
by GHC.Generics, shown in Section 2.2.1, requires the user to write a large number
of typeclass instances to define even basic generic functions. Yet, the pattern functors
generated by GHC are restricted to sums, products, unit, constants and metadata in-
formation. This means we can model representations as a single GADT, SRep defined
below, indexed by the pattern functor it inhabits.

data SRep (𝜑 ∶∶ ∗ → ∗) ∶∶ (∗ → ∗) → ∗ where
S_U1 ∶∶ SRep 𝜑 U1
S_K1 ∶∶ 𝜑 a → SRep 𝜑 (K1 i a)
S_L1 ∶∶ SRep 𝜑 f → SRep 𝜑 (f ∶+∶ g)
S_R1 ∶∶ SRep 𝜑 g→ SRep 𝜑 (f ∶+∶ g)
(∶∗∶) ∶∶ SRep 𝜑 f → SRep 𝜑 g→ SRep 𝜑 (f ∶∗∶ g)
S_M1 ∶∶ SMeta i t→ SRep 𝜑 f → SRep 𝜑 (M1 i t f)

2https://gitlab.haskell.org/ghc/ghc/issues/17223 and https://gitlab.haskell.
org/ghc/ghc/issues/14987

https://gitlab.haskell.org/ghc/ghc/issues/17223
https://gitlab.haskell.org/ghc/ghc/issues/14987
https://gitlab.haskell.org/ghc/ghc/issues/14987
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The handling of metadata is borrowed entirely from GHC.Generics and captured
by the SMeta datatype, which records the kind of meta-information stored at the type-
level.

data SMeta i t where
SM_D ∶∶ Datatype d ⇒ SMeta D d
SM_C ∶∶ Constructor c ⇒ SMeta C c
SM_S ∶∶ Selector s ⇒ SMeta S s

The SRep datatype enables us to write generic functionality more concisely than
GHC.Generics. Take the gsize function from Section 2.2.1 as an example. With pure
GHC.Generics, we must use Size and GSize typeclasses. With SRep we can write it
directly, provided we have a way to count the size of the leaves of type 𝜑.

gsize ∶∶ (∀ x . 𝜑 x→ Int) → SRep 𝜑 f→ Int
gsize r S_U1 = 0
gsize r (S_K1 x) = r x
gsize r (S_M1 x) = gsize r x
gsize r (S_L1 x) = gsize r x
gsize r (S_R1 x) = gsize r x
gsize r (x ∶∗∶ y) = gsize r x + gsize r y

Naturally, we still need to convert values of GHC.Generics.Rep f x into their closed
representation, SRep 𝜑 (GHC.Generics.Rep f) andmake some choice for𝜑. We could use
K1 R as 𝜑, essentially translating only the first layer into a generic representation, but
as we shall see in Section 3.2.2, we can also translate the entire value and use a fixpoint
combinator in 𝜑.

Even though SRep lacks a codes-based approach, that is, it can be defined for arbi-
trary types like GHC.Generics, it still admits some combinators that greatly assist a
programmer when writing their generic code, unlike GHC.Generics. The most useful
are repMap, repZip and repLeaves, that map, zip and collect the leaves of a SRep respec-
tively. These can easily be generalized to a monadic version.

repMap ∶∶ (∀ x . 𝜑 x→ 𝜓 x) → SRep 𝜑 f→ SRep 𝜓 f
repZip ∶∶ SRep 𝜑 f→ SRep 𝜓 f→ Maybe (SRep (𝜑 ∶∗∶ 𝜓) f)
repLeaves ∶∶ SRep 𝜑 f→ [Exists 𝜑]
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3.2.2 Mutual Recursion

The SRep 𝜑 f datatype enables us to write generic functions without resorting to type-
classes and provides a simple way to interact with potentially recursive subtrees through
the 𝜑 functor. Writing a deep representation involves defining a mutually recursive fam-
ily as any type that is not a primitive type, where the choice of primitive type is parame-
terized through the usual 𝜅 parameter. The pseudo-code below illustrates this idea.

data SFix 𝜅 ∶∶ ∗ → ∗ where
Prim ∶∶ (x ∈ 𝜅) ⇒ x→ SFix 𝜅 fam x
SFix ∶∶ (¬ (x ∈ 𝜅) , Generic x) ⇒ SRep (SFix prim) (Rep x) → SFix 𝜅 fam x

This approach works well for simpler applications, but by defining a mutually recur-
sive family in an open fashion, i.e., t is an element iff ¬ (t ∈ 𝜅), for some list 𝜅 of types
regarded as primitive, we would only be able to check for index equality through the
Typeablemachinery [89]. This would have to spread across the library, inherently break-
ing parametricity of maps and catamorphisms besides polluting the interface. Checking
for index equality is crucial for the definition of many generic concepts – zippers being
a prominent example, Section 3.2.4.1 – and was trivial to define in generics-mrsop,
thanks to its closed approach: should two types be identified by the same index into a
list containing all members of the family, then they are the same type.

To avoid having to spread Typeables around but still maintaining decidable type in-
dex equality we will apply the same trick here and define a family as two disjoint lists:
a type-level list fam for the elements that belong in the family and one for the primitive
types, usually denoted 𝜅. Note that unlike generics-mrsop, 𝜅 here has kind ′[∗].

Recursion is easily achieved through a SFix 𝜅 fam combinator, where fam ∶∶ ′[∗] is
the list of types that belong in the family and 𝜅 ∶∶ ′[∗] is the list of types to be considered
primitive, that is, is is not unfolded into a generic representation. The SFix combinator
has two constructors, one for carrying values of primitive types and one for unfolding a
next layer of the generic representation, as defined below.

data SFix 𝜅 fam ∶∶ ∗ → ∗ where
Prim ∶∶ (PrimCnstr 𝜅 fam x) ⇒ x→ SFix 𝜅 fam x
SFix ∶∶ (CompoundCnstr 𝜅 fam x) ⇒ SRep (SFix prim) (Rep x) → SFix 𝜅 fam x

Here, PrimCnstr and CompoundCnstr are constraint synonyms, defined below, to
encapsulate what it means for a type x to be primitive (resp. compound) with respect to
the fam and prim list of types.

type PrimCnstr 𝜅 fam x = (Elem x 𝜅 , NotElem x fam)
type CompoundCnstr 𝜅 fam x = (Elem x fam , NotElem x 𝜅 , Generic x)
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Elem and NotElem are custom constraints that state whether or not a type is an el-
ement of a list of types. They are defined with the help of the boolean type family and,
in the Elem case, we also carry a typeclass that enables us to construct a membership
proof.

type Elem a as = (IsElem a as ∼ ′True ,HasElem a as)
type NotElem a as = IsElem a as ∼ ′False
type family IsElem (a ∶∶ ∗) (as ∶∶ [∗]) ∶∶ Bool where
IsElem a ′[ ] = ′False
IsElem a (a ′∶ as) = ′True
IsElem a (b ′∶ as) = IsElem a as

HasElem a as, here, is a typeclass that produces an actual proof that the list as
contains a – encoded in a datatype ElemPrf a as. Pattern matching on a value of type
ElemPrf a as will unfold the structure of as. This is crucial in, for example, access-
ing typeclass instances for types in SFix 𝜅 fam. The HasElem typeclass and ElemPrf
datatype are defined below.

data ElemPrf a as where
Here ∶∶ ElemPrf a (a ′∶ as)
There ∶∶ ElemPrf a as→ ElemPrf a (b ′∶ as)

class HasElem a as where
hasElem ∶∶ ElemPrf a as

To define generic functions, we often need operation over the primitive types. We
can encode this via constraints, requiring that all elements of 𝜅 have instances of some
typeclass. Suppose we would like to write a term-level equality operator for values of
type SFix 𝜅 fam x, as in the Eq typeclass. This would require to ultimately compare
values of type y, for some y such that Elem y 𝜅. Naturally, this can only be done if all
elements of 𝜅 are members of the Eq typeclass. We specify that all elements of 𝜅 satisfy
a constraint with the All [26] type family:

type family All c xs ∶∶ Constraint where
All c ′[ ] = ()
All c (x (′ ⋅ ∶) xs) = (c x , All c xs)

Now, given a function with type (All Eq prim) ⇒ SFix prim x→ … , wemust extract
the Eq y instance from All Eq prim, for some y such that IsElem y prim ∼ ′True. This is
whereElemPrf becomes essential. By patternmatching onElemPrfwe are able to extract
the necessary instance through thewitness function. Naturally, oncewefind the instance
we are looking for, we record it in a datatype for easier access. This is similar to the Dict
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instance (All Eq 𝜅) ⇒ Eq (SFix 𝜅 fam f) where
(Prim x) ≡ (Prim y) = weq x y
(SFix x) ≡ (SFix y) = maybe False (all (≡) ∘ repLeaves) (repZip x y)

Figure 3.5: Equality instance for SFix.

datatype from generics-sop, but since we are working with a deep representation,
we only use witness for accessing functionality over the primitive types.

data Witness c x where
Witness ∶∶ (c x) ⇒ Witness c x

witness ∶∶ ∀ x xs c . (HasElem x xs , All c xs) ⇒ Proxy xs→ Witness c x
witness = witnessPrf (hasElem ∶∶ ElemPrf x xs)
where witnessPrf ∶∶ (All c xs) ⇒ ElemPrf x xs→ Witness c x

witnessPrf Here = Witness
witnessPrf (There p) = witnessPrf p

The witness function above enables us to cast the usual (≡) function, from Eq, as
operating over any element of a list of types. Pattern matching on the result of witness
enables the compiler to access the necessary Eq instance. With the help of weq below,
we define the Eq instance for SFix in Figure 3.5. Note that calling witness will require
an explicit type annotation informing the compiler about which typeclass we wish to
extract from the top-level All constraint.

weq ∶∶ ∀ x xs . (All Eq xs , Elem x xs) ⇒ Proxy xs→ x→ x→ Bool
weq p = case witness p ∶∶Witness Eq x of Witness→ (≡)

With the Elem functionality in place, we can define type-level equality for elements
of a given list – given SFix 𝜅 fam x and SFix 𝜅 fam y, to be able to know whether x ∶∼∶ y.
This functionality is important when defining the zipper [45] or generic unification, and
it comes for free in code-based approaches, such as generics-mrsop. In our current
setting, we need to use the fam type-level list and the HasElem typeclass. Note that the
proxies are present solely to aid the reduction of the IsElem type family, needed for Elem.

sameType ∶∶ (Elem x fam , Elem y fam)
⇒ Proxy fam→ Proxy x→ Proxy y→ Maybe (x ∶∼∶ y)

sameType = sameIdx (hasElem ∶∶ ElemPrf x fam) (hasElem ∶∶ ElemPrf y fam)
where sameIdx ∶∶ ElemPrf x xs→ ElemPrf x′ xs→ Maybe (x ∶∼∶ x′)

sameIdx Here Here = Just Refl
sameIdx (There rr) (There y) = go rr y
sameIdx = Nothing
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class (CompoundCnstr 𝜅 fam a) ⇒ Deep 𝜅 fam a where
dfrom ∶∶ a→ SFix 𝜅 fam a
default dfrom ∶∶ (GDeep 𝜅 fam (Rep a)) ⇒ a→ SFix 𝜅 fam a
dfrom = SFix ∘ gdfrom ∘ from
dto ∶∶ SFix 𝜅 fam a→ a
default dto ∶∶ (GDeep 𝜅 fam (Rep a)) ⇒ SFix 𝜅 fam a→ a
dto (SFix x) = to (gdto x)

class GDeep 𝜅 fam f where
gdfrom ∶∶ f x→ SRep (SFix 𝜅 fam) f
gdto ∶∶ SRep (SFix 𝜅 fam) f→ f x

Figure 3.6: Declaration of Deep and GDeep typeclasses.

Converting to a deep representation. Next we look at how to convert values
from their shallow GHC.Generics representation into generics-simplistic. As
usual, we use the dfrom and dto functions, which follow the textbook recipe of defining
generic functionality with GHC.Generics: use a typeclass and its generic variant and
use default signatures to bridge the gap between them. In our case, this is done with the
Deep andGDeep typeclasses, declared in Figure 3.6. This technique of deriving a generic
representation from some simpler generic representation is often refered to as Generic
Generic Programming [61].

Defining the GDeep instances is straightforward with the exception of the (K1 R a)
case, where we must perform different actions depending on whether or not a is a prim-
itive type. Ideally we would like to write something in the lines of:

instance (IsElem a 𝜅 ∼ ′True) ⇒ GDeep 𝜅 fam (K1 R a) …
instance (IsElem a 𝜅 ∼ ′False) ⇒ GDeep 𝜅 fam (K1 R a) …

But GHC cannot distinguish between these two instances when resolving them. Not
even -XOverlappingInstances can help us here. The solution, then, is to abstract
the call to IsElem to an auxiliary typeclass, which performs a type-level pattern-match
on the result of IsElem a 𝜅, which we call isPrim, below.

class GDeepAtom 𝜅 fam (isPrim ∶∶ Bool) a where
gdfromAtom ∶∶ Proxy isPrim→ a→ SFix 𝜅 fam a
gdtoAtom ∶∶ Proxy isPrim→ SFix 𝜅 fam a→ a

The GDeepAtom class possesses only two instances, one for primitive types and one
for types we wish to consider as members of our mutually recursive family, which are
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data Rose a = Fork a [Rose a]
deriving (Eq , Show , Generic)

type PrimsRose = ′[Int]
type FamRose = ′[Rose Int , [Rose Int]]
instance Deep PrimsRose FamRose (Rose Int)
instance Deep PrimsRose FamRose [Rose Int]
dfromRose ∶∶ Rose Int→ SFix PrimsRose FamRose (Rose Int)
dfromRose = dfrom
dtoRose ∶∶ SFix PrimsRose FamRose (Rose Int) → Rose Int
dtoRose = dto

Figure 3.7: Usage example for generics-simplistic.

indicated by the isPrim parameter. We recall the definitions for CompoundCnstr and
PrimCnstr below.

instance (CompoundCnstr 𝜅 fam a , Deep 𝜅 fam a) ⇒ GDeepAtom 𝜅 fam ′False a …
instance (PrimCnstr 𝜅 fam a) ⇒ GDeepAtom 𝜅 fam ′True a …
type PrimCnstr 𝜅 fam x = (Elem x 𝜅 , NotElem x fam)
type CompoundCnstr 𝜅 fam x = (Elem x fam , NotElem x 𝜅 , Generic x)

Finally, the actual instance for GDeep prim (K1 R a) triggers the evaluation of
IsElem, which in turn brings into scope the correct variation of the GDeepAtom:

instance (GDeepAtom 𝜅 fam (IsElem a prim) a) ⇒ GDeep 𝜅 fam (K1 R a) …

With the Deep typeclass setup, all we have to do is declare an empty instance for
every element of the family. Figure 3.7 illustrates the usage for the Rose datatype. The
monomorphic versions of dfrom and dto simply aid the compiler by providing all neces-
sary type parameters.

3.2.3 The (Co)Free (Co)Monad

Although the SFix type makes for a very intuitive recursion combinator, it does not give
us much flexibility: it does not support annotations nor holes. For example, suppose
we want to define a generic unification algorithm: how would we represent unifica-
tion variables within SFix? We would need an augmented SFix which would carry one
extra constructor for unification variables. Another example would be annotating an
SFix with some auxiliary values to make certain computations more efficient. These
variations over fixpoints can be achieved by combining the free monad and the cofree
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comonad in the same type, which we name HolesAnn 𝜅 fam 𝜑 h a. A value of type
HolesAnn 𝜅 fam 𝜑 h a is isomorphic to a value of type a, where each constructor is
annotated with 𝜑 and we might have holes of type h.

data HolesAnn 𝜅 fam 𝜑 h a where
Hole′ ∶∶ 𝜑 a→ h a→ HolesAnn 𝜅 fam 𝜑 h a
Prim′ ∶∶ (PrimCnstr 𝜅 fam a) ⇒ 𝜑 a→ a→ HolesAnn 𝜅 fam 𝜑 h a
Roll′ ∶∶ (CompoundCnstr 𝜅 fam a) ⇒ 𝜑 a→ SRep (HolesAnn 𝜅 fam 𝜑 h) (Rep a)

→ HolesAnn 𝜅 fam 𝜑 h a

The SFix combinator presented earlier can be easily seen as the special case where
annotations are the unit type,U1, and holes do not exist (which is captured by the empty
type V1). We can represent all the variations over fixpoints through type synonyms:

type SFix 𝜅 fam = HolesAnn 𝜅 fam U1 V1
type SFixAnn 𝜅 fam 𝜑 = HolesAnn 𝜅 fam 𝜑 V1
type Holes 𝜅 fam = HolesAnn 𝜅 fam U1

Again, with the help of pattern synonyms and COMPLETE pragmas – which stops
GHC from issuing -Wincomplete-patternswarnings – we can simulate the SFixAnn
datatype, for example.

pattern SFixAnn ∶∶ () ⇒ (CompoundCnstr 𝜅 fam a)
⇒ 𝜑 a→ SRep (SFixAnn 𝜅 fam 𝜑) (Rep a) → SFixAnn 𝜅 fam 𝜑 a

pattern SFixAnn ann x = Roll′ ann x
pattern PrimAnn ∶∶ () ⇒ (PrimCnstr 𝜅 fam a) ⇒ 𝜑 a→ a→ SFixAnn 𝜅 fam ann a
pattern PrimAnn ann x = Prim′ ann x
{-# COMPLETE SFixAnn , PrimAnn #-}

3.2.3.1 Annotated Fixpoints

Catamorphisms are used in a large number of computations over recursive structures.
They receive an algebra that is used to consume one layer of a datatype at a time and
consumes the whole value of the datatype using this recipe. The definition of the cata-
morphism is trivial in a setting where we have explicit recursion:

cata ∶∶ (∀ b . (CompoundCnstr 𝜅 fam b) ⇒ SRep 𝜑 (Rep b) → 𝜑 b)
→ (∀ b . (PrimCnstr 𝜅 fam b) ⇒ b→ 𝜑 b) → SFix 𝜅 fam h a→ 𝜑 a

cata f g (SFix x) = f (repMap (cata f g) x)
cata g (Prim x) = g x
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One example of catamorphisms is computing the height of a recursive structure. It
can be defined with cata in a simple manner with the help of the Const functor.

newtype Const t x = Const {getConst ∶∶ t}
heightAlgebra ∶∶ SRep (Const Int) xs→ Const Int iy
heightAlgebra = Const ∘ (1+) ∘maximum ∘ (0∶) ∘map (exElim getConst) ∘ repLeaves
height ∶∶ SFix 𝜅 fam a→ Int
height = getConst ∘ cata heightAlgebra

Now imagine our particular application makes a number of decisions based on the
height of the (generic) trees it handles. Calling height at each of those decision points is
time consuming. It is much better to compute the height of a tree only once and keep
the intermediary results annotated in their respective subtrees. We can easily do so with
our SFixAnn cofree comonad [37]. In fact, we would say that the height is a synthesized
attribute in attribute grammar [52] lingo.

synthesize ∶∶ (∀ b . (CompoundCnstr 𝜅 fam a) ⇒ SRep 𝜑 (Rep b) → 𝜑 b)
→ (∀ b . (PrimCnstr 𝜅 fam a) ⇒ b→ 𝜑 b)
→ SFix 𝜅 fam a→ SFixAnn 𝜅 fam 𝜑 a

synthesize f g = cata (𝜆r→ SFixAnn (f (repMap getAnn r)) r) (𝜆a→ PrimAnn (g b) b)

Finally, an algorithm that constantly queries the height of the subtrees can be com-
puted in two passes: in the first pass we compute the heights and leave them annotated
in the tree, in the second we run the algorithm. Moreover, we can compute all the nec-
essary synthesized attributes an algorithm needs in a single preprocessing phase. This
is a crucial maneuver to make sure our generic programs can scale to real-world inputs.
Naturally, cata and synthesize are actually implemented in their monadic form and over
HolesAnn for maximal generality.

3.2.4 Practical Features

Whilst developing hdiff (Chapter 5), we ran into a number of practicalities regarding
the underlying generic programming library. Of particular importance are zippers and
unification, which play a big role in the algorithmsunderlying thehdiff approach. This
section gives an overview of those features.

3.2.4.1 Zippers

Zippers [45] are a well established technique for traversing a recursive data structure
keeping track of a focus point. Defining generic zippers is not new, this has been done
by many authors [1, 43, 112] for many different classes of datatypes in the past. In our



GENERIC PROGRAMMINGWITHMUTUALLY RECURSIVE TYPES 55

particular case, we are not interested in traversing a generic representation by means
of the usual zipper traversals – up, down, left and right – which move the focus point.
Instead, we just want a datatype that encodes a context with one focus, encoded by SZip
below. A value of type SZip ty w f represents a value of type SRep w f with one hole, or
focus, in a position with type ty.

data SZip ty w f where
Z_L1 ∶∶ SZip ty w f → SZip ty w (f ∶+∶ g)
Z_R1 ∶∶ SZip ty w g→ SZip ty w (f ∶+∶ g)
Z_PairL ∶∶ SZip ty w f→ SRep w g→ SZip ty w (f ∶∗∶ g)
Z_PairR ∶∶ SRep w f → SZip ty w g→ SZip ty w (f ∶∗∶ g)
Z_M1 ∶∶ SMeta i t → SZip ty w f → SZip ty w (M1 i t f)
Z_KH ∶∶ → SZip ty w (K1 i a)

The Zipper datatype will ensure that the focus lies in a recursive position. Its defi-
nition is given below. It encapsulates the ty above as an existential type and keeps the
focus point accessible. We also pass around a constraint-kinded variable to enable one
to specify custom constraints about the types in question.

data Zipper c f g t where
Zipper ∶∶ c ⇒ SZip t f (Rep t) → g t→ Zipper c f g t

Given a value of type SZip ty 𝜑 t and a value of type 𝜑 ty, it is straightforward to plug
the hole and produce a SRep 𝜑 t. The other way around, however, is more complicated.
Given a SRep 𝜑 t, we might have many possible zippers – binary trees, for example, can
have a hole on the left or on the right branch. Consequently, we must return a list of
zippers. The zippers function below does exactly that. Its type is convoluted because it
works over HolesAnn (and therefore also for SFix, SFixAnn and Holes), but it is concep-
tually simple: given a test for whether a hole of type 𝜑 a is actually a hole in a recursive
position, we return the list of possible zippers for a value with holes. The definition
is standard and we encourage the interested reader to check the source code for more
details (Appendix A).

type Zipper′ 𝜅 fam 𝜑 h t
= Zipper (CompoundCnstr 𝜅 fam t) (HolesPhi 𝜅 fam 𝜑 h) (HolesPhi 𝜅 fam 𝜑 h) t

zippers ∶∶ (∀ a . (Elem t fam) ⇒ h a→ Maybe (a ∶∼∶ t))
→ HolesPhi 𝜅 fam 𝜑 h t→ [Zipper′ 𝜅 fam 𝜑 h t]
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3.2.4.2 Unification and Anti-Unification

Both unification and anti-unification algorithms make up an important part of the ver-
nacular of term-manipulation. Unsurprisingly, wewill also need to implement these fea-
tures intogenerics-simplistic. We use themextensively inChapter 5. This section
provides an overview of the (anti-)unification provided by generics-simplistic.

Syntactic unification algorithms [94] receive as input two terms t and u with vari-
ables and outputs substitutions 𝜎 such that 𝜎 t ≡ 𝜎 u, when such 𝜎 exists. Anti-
unification[91], on the other hand, receives two terms t and u and outputs one term
r and two substitutions 𝜎 and 𝜑 such that t ≡ 𝜎 r and u = 𝜑 r.

With our current setup, we want to unify two terms of type Holes 𝜅 fam 𝜑 at, that
is, two elements of the mutually recursive family fam with unification variables of type
𝜑. A substitution is given by:

type Subst 𝜅 fam 𝜑 = Map (Exists 𝜑) (Exists (Holes 𝜅 fam 𝜑))

We need the existentials here in order to use the builtin, homogeneous, Data.Map.
Naturally, when looking for the value associated with a key within the substitution we
will run into a type error as soon as we unwrap the Exists. There are a number of solu-
tions to this. For one, we could use the sameTy function and ensure they are of the same
type. Pragmatically though, as long as we ensure we only insert keys 𝜑 at associated
with values Holes 𝜅 fam 𝜑 at, the type indexes will never differ and we can safely call
unsafeCoerce to mitigate any performance overhead. We chose to use unsafeCoerce but
stress that it can be easily avoided with a call to sameTy.

substInsert ∶∶ (Ord (Exists 𝜑)) ⇒ Subst 𝜅 fam 𝜑 → 𝜑 at→ Holes 𝜅 fam 𝜑 at
→ Subst 𝜅 fam 𝜑

substLkup ∶∶ (Ord (Exists 𝜑)) ⇒ Subst 𝜅 fam 𝜑 → 𝜑 at→ Maybe (Holes 𝜅 fam 𝜑 at)

When attempting to solve a unification problem, there are two types of failures that
can occur: symbol clashes happen when we try to unify different symbols, for example,
c x is not unifiable with c′ x because c ≢ c′; and occurs-check errors are raised when
there is a loop in the substitution, For example, if we try to unify c (c′ x) with c x, we
would have to substitute x for c′ x, but this would never terminate. We encode these
errors in the UnifyErr datatype, making it easy for users of the library to catch these
errors and extract information from them.

data UnifyErr 𝜅 fam 𝜑 where
OccursCheck ∶∶ [Exists 𝜑] → UnifyErr 𝜅 fam 𝜑
SymbolClash ∶∶ Holes 𝜅 fam 𝜑 at→ Holes 𝜅 fam 𝜑 at→ UnifyErr 𝜅 fam 𝜑
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lgg ∶∶ (All Eq 𝜅) ⇒ Holes 𝜅 fam 𝜑 at→ Holes 𝜅 fam 𝜓 at
→ Holes 𝜅 fam (Holes 𝜅 fam 𝜑 ∶∗∶Holes 𝜅 fam 𝜓) at

lgg (Prim x) (Prim y) =
∣ weq (Proxy ∶∶ Proxy 𝜅) x y = Prim x
∣ otherwise = (Prim x ∶∗∶ Prim y)

lgg x@(Roll rx) y@(Roll ry) = case zipSRep rx ry of
Nothing→ Hole (x ∶∗∶ y)
Just r → Roll (repMap (uncurry′ lgg) r)

lgg x y = Hole (x ∶∗∶ y)

Figure 3.8: Classic anti-unification algorithm [91], producing the least general general-
ization of two trees.

The unify function has the type one would expect: given two terms with unification
variables of type 𝜑, either they are not unifiable or there exists a substitution that makes
them equal.

unify ∶∶ (Ord (Exists 𝜑) , EqHO 𝜑) ⇒ Holes 𝜅 fam 𝜑 at→ Holes 𝜅 fam 𝜑 at
→ Except (UnifyErr 𝜅 fam 𝜑) (Subst 𝜅 fam 𝜑)

Our unify function is a constraint-based unifier which computes the most general
unifier in two phases: first it collects all the necessary equivalences, then it tries to pro-
duce an idempotent substitution from the gathered equivalences. We omit technical
details regarding the implementation of the unification algorithm and refer the reader
to the existing literature [94].

Anti-unification [91] is dual to unification. It is the process of identifying the longest
common prefix of two terms For example, take x = Bin (Bin 1 2) Leaf and y =
Bin (Bin 1 3) (Bin 4 5), the term Bin (Bin 1 a) b is the least general generaliza-
tion of x and y. That is, there exist two instantiations of a and b yielding x or y. The term
Bin c b is also a generalization of x and y, but it is not the least general because to obtain
x or y we would have instantiate c as Bin 1 2 or Bin 1 3, and these terms can be further
anti-unified. Figure 3.8 illustrates the implementation of the syntactical anti-unification
algorithm.

3.3 Discussion

In this chapter we explored two different ways of writing generic programs that must
work over mutually recursive families. Looking back at the spectrum of generic pro-
gramming libraries, in Figure 2.11, we had a open hole for code-based approach with ex-
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Pattern Functors Codes

No Explicit Recursion GHC.Generics generics-sop
Simple Recursion

generics-simplistic generics-mrsop
Mutual Recursion

Figure 3.9: Updated spectrum of generic programming libraries.

plicit recursion of any type, which can be filled by generics-mrsop. When it comes to
pattern functors, although regular and multirec already exist, using those libraries
imposes a significant overheadwhen compared togenerics-simplistic, for they do
not support combinator-based generic programming. The updated table of generic pro-
gramming libraries is given in Figure 3.9, where we place our libraries in the spectrum
of generic programming variants.

Unfortunately, the generics-mrsop heavy usage of type families triggers a mem-
ory leak in the compiler. This renders the library unusable for large families of mutu-
ally recursive datatypes at the time of writing this thesis. Luckily, however, we were
able to work around that by dropping the sums of products structure but maintaining a
combinator-based approach in generics-simplistic, which enabled us to run our
experiments with real-world data, as discussed in Chapter 6.

Although both generics-mrsop and generics-simplistic are quite similar,
the sums-of-products structure of generics-mrsop is more convenient to program
with. Wemust patternmatch on less cases (first on sums, then on products) andwe have
access to more combinators to disect the sums-of-products structure. Now, that being
said, not all generic programming applicationswill require that level of control and some
could still get by without it. The hdiff (Chapter 5) is an example of the later. Our first
implementation with generics-mrsopwas more natural, but we were still able to im-
plement it usinggenerics-simplistic. The advantages of generics-simplistic
are twofold: (A) it uses significantly less type families and does not run into the bugs that
generics-mrsop did and (B) it is simpler to use and it piggybacks on a number of fa-
miliar features from GHC.Generics.

While developing the generics-mrsop and generics-simplistic libraries,
which happened under close collaboration with Alejandro Serrano, we also explored
a number of variants of these libraries such as kind-generics [98], which enables a
user to represent almost any Haskell datatype generically, including GADTs. These are
out of the scope of this thesis since we do not require all of that expressivity to write our
differencing algorithms.
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Structural Patches
The gdiff [55] approach, discussed in Section 3.1.4, which flattens a tree into a list,
following classical tree edit distance algorithms encoded through using type-safe edit-
scripts, inherits the problems of edit-script based approaches. These include ambiguity
on the representation of patches, non-uniqueness of optimal solutions and difficulty of
merging. The stdiff approach, discussed through this chapter, arose from our study
of the difficulties about merging gdiff patches [107].

The heterogeneity of Patchgd makes merging difficult. Recall that a value of type
Patchgd xs ys transforms a list of trees xs into a list of trees ys. If we are given two patches
Patchgd xs ys and Patchgd xs zs, we would like to produce two patches Patchgd ys rs
and Patchgd zs rs such that the canonical merge square commutes. The problem be-
comes clear when we try to determine rs correctly: sometimes such rs might not even
exist [107].

Our stdiff approach, or, structural patches, marks our first attempt at defining
a type-indexed patch datatype, Patchst, in pursuit of better behaved merge algorithms.
The overall idea consists in making sure that the type of patches is also tree structured,
as opposed to managing a list-like patch data structure that is supposed to operate over
tree structured data. As it turns out, it is not possible to have fully homogeneous patches,
but we were able to identify homogeneous parts of our patches which we can use to
synchronize changes when defining our merge operation, but let us not get ahead of
ourselves.

Structural Patches differ from edit-scripts by using tree-shaped, homogeneous patch
– a patch transforms two values of the same type. The edit operations themselves are
analogous to edit scripts, we support insertions, deletions and copies, but these are struc-
tured to follow the sums-of-products of datatypes: there is one way of changing sums,
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Figure 4.1: Graphical representation of a simple transformation. Copies, insertions
and deletions around the tree are represented with =⋅, +⋅ and −⋅ respectively. Modifica-
tions are denoted ⋅ ↦ ⋅.

oneway of changing products and oneway of changing the recursive positions of a value.
For example, consider the following trees:

t1 = Bin (Tri a b c) d
t2 = Bin (Bin a′ b) (Bin d e)

These are the trees that are depicted in Figure 4.1(a) and Figure 4.1(b) respectively.
How should we represent the transformation mapping t1 into t2? Traversing the trees
from their roots, we see that on the outermost level they both consist of a Bin, yet the
fields of the source and destination nodes are different: the first field changes from a Bin
to a Tri, which requires us to reconcile the list of fields [a , b , c] into [a′ , b]. This can
be done by the means of an edit-script. The second field, however, witnesses a change
in the recursive structure of the type. We see that we have inserted new information,
namely (Bin □ e). After inserting this context, we simply copy d from the source to the
destination. This transformation has been sketched graphically in Figure 4.1(c), and
showcases all the necessary pieces we will need to write a general encoding of transfor-
mations between objects that support insertions, deletions and copies.

The stdiff approach to differencing is unlike the edit-scripts we saw previously, using
the shape of the datatype in question to define a structured notion of patch. As we will
see in the remainder of this chapter, however, computing these patches is intractable as
the number of possible patches explodes. This lead us to abandon this approach in favor
of the differencing algorithm presented in Chapter 5. Nonetheless, we believe there is
value in studying this approach. For one thing it explores a different part in the design
space compared to the gdiff algorithm we saw previously, but it also provides insights
that help understand the more efficient approach in Chapter 5.

To write the stdiff algorithms in Haskell, we must rely on the generics-mrsop
library (Section 3.1) as our generic programming workhorse for two reasons. First, we
do require the concept of explicit sums of products in the very definition of Patchst x.
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Secondly, we need gdiff’s assistance in computing patches (Section 4.3.2) and gdiff
also requires, to a lesser extent, sums of products structured datatypes, hence is easily
written with generics-mrsop, as seen in Section 3.1.4.

The contributions in this chapter arise from joint work with Pierre-Evariste Dagand,
published in TyDe 2017 [74] and coded in Agda [83]repository1. Later, we collaborated
closely with Arian van Putten, in translating the Agda code to Haskell, extending its
scope to mutually recursive datatypes. The code presented here, however, is loosely
based on Van Putten’s translation of our Agda repository to Haskell as part of his Master
thesis work [92]. We chose to present all of our work in a single programming language
to keep the thesis consistent throughout.

In this chapter we will delve into the construction of Patchst and its respective com-
ponents. Firstly, we familiarize ourselves with Patchst and its application function (Sec-
tion 4.1). Next we look into merging and its commutativity proof in Section 4.2. Lastly,
we discuss the diff function in Section 4.3, which comprises a significant drawback of
the stdiff approach for its computational complexity.

4.1 The Type of Patches

Next we look at the Patchst type, starting with a single layer of datatype, i.e., a single
application of the datatypes pattern functor. Later, in Section 4.1.2 we extend this treat-
ment to recursive datatypes, essentially by taking the fixpoint of the constructions in
Section 4.1.1. The generics-mrsop library (Chapter 3) will be used throughout the
exposition.

Recall that a datatype, when seen through its initial algebra semantics [105], can
be seen as an infinite succession of applications of its pattern functor, call it 𝐹, to itself:
𝜇𝐹 = 𝐹(𝜇𝐹). The Patchst type will describe the differences between values of 𝜇𝐹 by
successively applying the description of differences between values of type 𝐹, closely
following the initial algebra semantics of datatypes.

4.1.1 Functorial Patches

Handling one layer of recursion is done by addressing the possible changes at the sum
level, followed by some reconciliation at the product level when needed.

The first part of our algorithm handles the sums of the universe. Given two values,
x and y, it computes the spine, capturing the largest common coproduct structure. We
distinguish three possible cases:

1https://github.com/VictorCMiraldo/stdiff

https://github.com/VictorCMiraldo/stdiff
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• x and y are fully equal, in which case we copy the full values regardless of their
contents. They must also be of the same type.

• x and y have the same constructor – i.e., x = inj c px and y = inj c py – but some
subtrees of x and y are distinct, in which case we copy the head constructor and
handle all arguments pairwise.

• x and yhave distinct constructors, inwhich casewe record a change in constructor
and a choice of the alignment of the source and destination’s constructor fields.
Here, x and ymight be of a different type in the family.

The datatype Spine, defined below, formalizes this description. The three cases we
describe above correspond to the three constructors of Spine. When two values are not
equal, we need to represent the differences somehow. If the values have the same con-
structor we need to reconcile the fields of that constructor whereas if the values have
different constructors we need to reconcile the products that make the fields of the con-
structors. We index the datatype Spine by the sum codes it operates over because we
need to lookup the fields of the constructors that have changed, and align them in the
case of SChg. Alignments will be introduced shortly. For the time being, let us continue
to focus on spines. Intuitively, spines act on sums and capture the “largest shared co-
product structure”. Recall 𝜅 ∶∶ kon → ∗ interprets the opaque types in the mutually
recursive family in question and codes ∶∶ [[[Atom kon]]] lists all the sums-of-products
in the family. Both come from generics-mrsop representation of mutually recursive
datatypes, discussed in Section 3.1.

data Spine 𝜅 codes ∶∶ [[Atom kon]] → [[Atom kon]] → ∗ where
Scp ∶∶ Spine 𝜅 codes s1 s1
SCns ∶∶ Constr s1 c1 → NP (At 𝜅 codes) (Lkup c1 s1) → Spine 𝜅 codes s1 s1
SChg ∶∶ Constr s1 c1 → Constr s2 c2 → Al 𝜅 codes (Lkup c1 s1) (Lkup c2 s2)

→ Spine 𝜅 codes s1 s2

Our Agda model [74] handles only regular types, or, mutually recursive families
consisting of a single datatype. Hence, the Spine type would arise naturally as a homo-
geneous type. While extending theAgdamodel to a full fledgedHaskell implementation,
together with Van Putten [92], we noted how this would severely limit the number of po-
tential copy opportunities throughout patches. For example, imagine we want to patch
the following values:

data T = T1 X Y Z ∣ T2 U
data U = U1 X Y Z ∣ U2 T
diff (T1 x1 y1 z1) (U1 x2 y2 z2) = SChg T1 U1 …

With a fully homogeneous Spine type, our only option is to delete T1, then insert
U1 at the recursion layer (4.1.2) This would be unsatisfactory as it only allows copying
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of one of the fields, where gdiff would be able to copy more fields for it does not care
about the recursive structure.

The semantics of Spine are straightforward, but before continuing with applySpine,
a short technical interlude is necessary. The testEquality, below, is used to compare
the type indices for propositional equality. It comes from Data.Type.Equality and has
type f a → f b → Maybe (a ∶∼∶ b). Also note that we must pass two SNat arguments
to disambiguate the ix and iy type variables. Without those arguments, these variables
would only appear as an argument to a type family, which may not be injective and
would trigger a type error. Using the SNat singleton [29] is the standard Haskell type-
level programming workaround to this problem.

data SNat ∶∶ Nat→ ∗ where …

The applySpine function is given by checking the provided value is made up with
the required constructor. In the SCns case we we must ensure that type indices match –
for Haskell type families may not be injective – then simply map over the fields with the
applyAt function, which applies changes to atoms. Otherwise, we reconcile the fields
with the applyAl function, whose definition follows shortly.

applySpine ∶∶ (EqHO 𝜅) ⇒ SNat ix→ SNat iy
→ Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes)
→ Rep 𝜅 (Fix 𝜅 codes) (Lkup ix codes)
→ Maybe (Rep 𝜅 (Fix 𝜅 codes) (Lkup iy codes))

applySpine Scp x = return x
applySpine ix iy (SCns c1 dxs) (sop→ Tag c2 xs) = do
Refl← testEquality ix iy
Refl← testEquality c1 c2
inj c2 <$> (mapNPM applyAt (zipNP dxs xs))

applySpine (SChg c1 c2 al) (sop→ Tag c3 xs) = do
Refl← testEquality′ c1 c3
inj c2 <$> applyAl al xs

The Spine datatype and applySpine are responsible for matching the constructors of
two trees, but we still need to determine how to continue representing the difference in
the products of data stored therein. At this stage in our construction, we are given two
heterogeneous lists, corresponding to the fields associated with two distinct construc-
tors. As a result, these lists need not have the same length nor store values of the same
type. To do so, we need to decide how to line up the constructor fields of the source and
destination. We shall refer to the process of reconciling the lists of constructor fields as
solving an alignment problem.

Finding a suitable alignment between two lists of constructor fields amounts to find-
ing a suitable edit-script, that relates source fields to destination fields. The Al datatype
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below describes such edit-scripts for a heterogeneously typed list of atoms. These scripts
may insert fields in the destination (Ains), delete fields from the source (Adel), or asso-
ciate two fields from both lists (AX).

data Al 𝜅 codes ∶∶ [Atom kon] → [Atom kon] → ∗ where
A0 ∶∶ Al 𝜅 codes ′[ ] ′[ ]
AX ∶∶ At 𝜅 codes x → Al 𝜅 codes xs ys→ Al 𝜅 codes (x ′∶ xs) (x ′∶ ys)
ADel ∶∶ NA 𝜅 (Fix 𝜅 codes) x→ Al 𝜅 codes xs ys→ Al 𝜅 codes (x ′∶ xs) ys
AIns ∶∶ NA 𝜅 (Fix 𝜅 codes) x→ Al 𝜅 codes xs ys→ Al 𝜅 codes xs (x ′∶ ys)

We require alignments to preserve the order of the arguments of each constructor,
thus forbidding permutations of arguments. In effect, the datatype of alignments can
be viewed as an intentional representation of (partial) order and type preserving maps,
along the lines of McBride’s order preserving embeddings [65], mapping source fields
to destination fields. This makes sure that our patches also give rise to tree mappings
(Section 2.1.2) in the classical tree-edit distance sense.

Given a partial embedding for atoms, we can therefore interpret alignments into
a function transporting the source fields over to the corresponding destination fields,
failure potentially occurring when trying to associate incompatible atoms. Recall (×)
and 𝜖 are the constructors of type NP (Page 23):

applyAl ∶∶ (EqHO 𝜅) ⇒ Al 𝜅 codes xs ys→ PoA 𝜅 (Fix 𝜅 codes) xs
→ Maybe (PoA 𝜅 (Fix 𝜅 codes) ys)

applyAl A0 𝜖 = return 𝜖
applyAl (AX dx dxs) (x × xs) = (×) <$> applyAt (dx ∶∗∶ x) <∗> applyAl dxs xs
applyAl (AIns x dxs) xs = (x×) <$> applyAl dxs xs
applyAl (ADel x dxs) (y × xs) = guard (eq1 x y) ∗> applyAl dxs xs

Finally, when synchronizing atoms we must distinguish between a recursive posi-
tion or opaque data. In case of opaque data, we simply record the old value and the new
value.

data TrivialK (𝜅 ∶∶ kon→ ∗) ∶∶ kon→ ∗ where
Trivial ∶∶ 𝜅 kon→ 𝜅 kon→ TrivialK 𝜅 kon

In case we are at a recursive position, we record a potential change in the recursive
position with Al𝜇, which we will get to shortly.

data At (𝜅 ∶∶ kon→ ∗) (codes ∶∶ [[[Atom kon]]]) ∶∶ Atom kon→ ∗ where
AtSet ∶∶ TrivialK 𝜅 kon→ At 𝜅 codes (′K kon)
AtFix ∶∶ (IsNat ix) ⇒ Al𝜇 𝜅 codes ix ix→ At 𝜅 codes (′I ix)
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The application function for atoms follows the same structure. In case we are apply-
ing a patch to an opaque type, wemust understandwhether said patch represents a copy,
i.e., the source and destination values are the same. If that is the case, we simply copy
the provided value. Otherwise, we must ensure the provided value matches the source
value. The recursive position case is directly handled by the applyAl𝜇 function.

applyAt ∶∶ (EqHO ki) ⇒ At 𝜅 codes at→ NA 𝜅 (Fix 𝜅 codes)) at
→ Maybe (NA 𝜅 (Fix 𝜅 codes) at)

applyAt (AtSet (Trivial x y)) (NA𝐾 a)
∣ eqHO x y = Just (NA𝐾 a)
∣ eqHO x a = Just (NA𝐾 b)
∣ otherwise = Nothing

applyAt (AtFix px) (NA𝐼 x) = NA𝐼 <$> applyAl𝜇 px x

The last step is to address how to make changes over the recursive structure of our
value, defining Al𝜇 and applyAl𝜇, which will be our next concern.

4.1.2 Recursive Changes

In the previous section, wepresented patches describing changes to the coproducts, prod-
ucts and atoms of our SoP universe. This treatment handled just a single layer of the fix-
point construction. In this section, we tie the knot and define patches describing changes
to arbitrary recursive datatypes.

To represent generic patches on values of Fix codes ix, we will define two mutually
recursive datatypes Al𝜇 and Ctx. The semantics of both these datatypes will be given by
defining how to apply them to arbitrary values:

• Much like alignments for products, a similar phenomenon appears at fixpoints.
When comparing two recursive structures, we can insert, remove or modify con-
structors. Since we are working over mutually recursive families, removing or
inserting constructors can change the overall type. We will use Al𝜇 ix iy to spec-
ify these edit-scripts at the constructor-level, describing a transformation from
Fix codes ix to Fix codes iy.

• Wheneverwe choose to insert or delete a recursive subtree, wemust specifywhere
this modification takes place. To do so, we will define a new type Ctx … ∶∶
′[Atom kon] → ∗, inspired by zippers [45, 64], to navigate through our data-
structures. A value of type Ctx … p selects a single atom I from the product of
type p.
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Modeling changes over fixpoints closely follows our definition of alignments of prod-
ucts. Instead of inserting and deleting elements of the productwe insert, delete ormodify
constructors. Our previous definition of spines merely matched the constructors of the
source and destination values – but never introduced or removed them. It is precisely
these operations that we must account for here.

data Al𝜇 𝜅 codes ∶∶ Nat→ Nat→ ∗ where
Spn ∶∶ Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes)

→ Al𝜇 𝜅 codes ix iy
Ins ∶∶ Constr (Lkup iy codes) c→ InsCtx 𝜅 codes ix (Lkup c (Lkup iy codes))

→ Al𝜇 𝜅 codes ix iy
Del ∶∶ Constr (Lkup ix codes) c→ DelCtx 𝜅 codes iy (Lkup c (Lkup ix codes))

→ Al𝜇 𝜅 codes ix iy

The first constructor, Spn, does not perform any new insertions and deletions, but
instead records a spine and an alignment of the underlying product structure. This
closely follows the patches we have seen in the previous section. To insert a new con-
structor, Ins, requires two pieces of information: a choice of the new constructor to be
introduced, called c, and the fields associated with that constructor. Note that we only
need to record all but one of the constructor’s fields, as represented by a value of type
InsCtx ki codes ix (Lkup c (Lkup iy codes)). Deleting a constructor is analogous to
insertions, with InsCtx and DelCtx being slight variations over Ctx, where one actually
flips the arguments to ensure the transformation is on the right direction.

type InsCtx 𝜅 codes = Ctx 𝜅 codes (Al𝜇 𝜅 codes)
type DelCtx 𝜅 codes = Ctx 𝜅 codes (Flip (Al𝜇 𝜅 codes))
newtype Flip f ix iy = Flip {unFlip ∶∶ f iy ix}

Our definition of insertion and deletions relies on identifying one recursive argu-
ment among the product of possibilities. To model this accurately, we define an indexed
zipper to identify a recursive atom (indicated by a value of type I) within a product of
atoms. Conversely, upon deleting a constructor from the source structure, we exploitCtx
to indicate the subtree that should be used for the remainder of the patch application, dis-
carding all other constructor fields. We parameterize theCtx typewith aNat→ Nat→ ∗
argument to distinguish between these two cases, as seen above.

data Ctx 𝜅 codes (p ∶∶ Nat→ Nat→ ∗) (ix ∶∶ Nat) ∶∶ [Atom kon] → ∗ where
H ∶∶ (IsNat iy) ⇒ p ix iy→ PoA 𝜅 (Fix 𝜅 codes) xs→ Ctx 𝜅 codes p ix (′I iy ′∶ xs)
T ∶∶ NA 𝜅 (Fix 𝜅 codes) a→ Ctx 𝜅 codes p ix xs→ Ctx 𝜅 codes p ix (a ′∶ xs)

Consequently, we will have two application functions for contexts, one that inserts
and one that removes contexts. Thismakes the need to flip the type indexes ofAl𝜇, when
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defining DelCtx, clear. Inserting a context is done by receiving a tree and returning the
product stored in the context with the distinguished field applied to the received tree:

insCtx ∶∶ (IsNat ix , EqHO 𝜅) ⇒ InsCtx 𝜅 codes ix xs→ Fix 𝜅 codes ix
→ Maybe (PoA 𝜅 (Fix 𝜅 codes) xs)

insCtx (H x rest) v = (×rest) ∘ NA𝐼 <$> applyAl𝜇 x v
insCtx (T a ctx) v = (a×) <$> insCtx ctx v

The deletion function discards any information we have about all the constructor
fields, except for the subtree used to continue the patch application process. This is a
consequence of our design decision, at the time, of having application functions as per-
missive as possible. Intuitively, the deletion context identifies the only field that should
not be deleted. By not checking whether the elements we are applying tomatch the ones
that should be deleted, we get an application function that applies to more elements for
free.

delCtx ∶∶ (IsNat ix , EqHO 𝜅) ⇒ DelCtx 𝜅 codes ix xs→ PoA 𝜅 (Fix 𝜅 codes) xs
→ Maybe (Fix 𝜅 codes ix)

delCtx (H x rest) (NA𝐼 v × p) = applyAl𝜇 (unFlip x) v
delCtx (T a ctx) (at × p) = delCtx ctx p

Finally, the application function for Al𝜇 is nothing but selecting whether we should
use the spine functionality or insertion and deletion of a context.

applyAl𝜇 ∶∶ (IsNat ix , IsNat iy , EqHO 𝜅) ⇒ Al𝜇 𝜅 codes ix iy→ Fix 𝜅 codes ix
→ Maybe (Fix 𝜅 codes iy)

applyAl𝜇 (Spn sp) (Fix rep) = Fix <$> applySpine spine rep
applyAl𝜇 (Ins c ctx) (Fix rep) = Fix ∘ inj c <$> insCtx ctx f
applyAl𝜇 (Del c ctx) (Fix rep) = delCtx ctx <$>match c rep

The two underscores at the Spn case are just an extraction of the necessary singletons
to make the applySpine typecheck. These can be easily replaced by getSNat with the
correct proxies. Figure 4.2 provides a graphical illustration of a value of type Patchst
that transforms two concrete trees.

type Patchst 𝜅 codes ix = Al𝜇 𝜅 codes ix ix
applyst ∶∶ (IsNat ix , EqHO 𝜅) ⇒ Patchst 𝜅 codes ix→ Fix codes ix→ Maybe (Fix codes ix)
applyst = applyAl𝜇

An easily overlooked property of our patch definition is that the destination values it
computes are guaranteed to be type-correct by construction. This is unlike the line-based
or untyped approaches (which may generate ill-formed values) and similar to earlier
results on type-safe differences [55].
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Figure 4.2: A value of type Patchst with its graphical representation.

4.2 Merging Patches

The patches encoded in the Patchst type clearly identify a prefix of constructors copied
from the root of a tree up until the location of the changes and any insertion or deletions
that might happen along the way. Moreover, since these patches also mirror the tree
structure of the data in question, it becomes quite natural to identify separate changes.
For example, if one change works on the left subtree of the root, and another on the
right, they are clearly disjoint and can be merged. Finally, the explicit representation of
insertions and deletions at the fixpoint level gives us a simple global alignment for our
synchronizer.

In this section we discuss a simple merging algorithm, which reconciles changes
from two different patches whenever these are non-interfering, for example, as in Fig-
ure 4.3. We call non-interfering patches disjoint, as they operate on separate parts of a
tree.

A positive aspect of the Patchst approach in comparison with a purely edit-scripts
based approach is the significantly simplermerge function. This is due to Patchst having
clear homogeneous sections. Consequently, the type of themerge function is simple and
reflects the fact that we expect a patch that operates over the values of the same type as
a result:

merge ∶∶ Patchst 𝜅 codes ix→ Patchst 𝜅 codes ix→ Maybe (Patchst 𝜅 codes ix)
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Figure 4.3: A simple example of mergeable patches.

A call tomerge, in Haskell, returnsNothing if the patches have non-disjoint changes,
that is, if both patches want to change the same part of the source tree.

Prior to prototyping stdiff in Haskell, we already had aworkingmodel of stdiff
in Agda [74], which was created with the goal of proving that the merging algorithm
would respect locality. In our Agda model, we have divided the merge function and
the notion of disjointness, which yields a total merge function for the subset of disjoint
patches:

merge ∶ (p q ∶ Patch 𝜅 codes ix) → Disjoint p q→ Patch 𝜅 codes ix

A value of type Disjoint p q corresponds to a proof that p and q change different
parts of the source tree and is a symmetric relation – that is, Disjoint p q iff Disjoint q p.
This separation makes reasoning about the merge function much easier. In fact, we
have proven that the merge function over regular datatypes commutes. A simplified
statement of our theorem is given below:

merge--commutes ∶ (p q ∶ Patch 𝜅 codes ix)
→ (hyp ∶ Disjoint p q)
→ apply (merge p q hyp) ∘ q ≡ apply (merge q p (sym hyp)) ∘ p

It is also worth noting that encoding themerge to be applied to the divergent replicas
instead of the common ancestor – residual-like approach to merging (Section 2.1.4) – is
instrumental to write a concise property and, consequently, prove the result. A merge
function that applies to the common ancestor would probably require a muchmore con-
voluted encoding ofmerge--commutes above.

In a Haskell development, however, it is simpler to rely on the Maybe monad for
disjointness. In fact, we define disjointness as whether or not merge returns a Just:

disjoint ∶∶ Patch 𝜅 codes ix→ Patch 𝜅 codes ix→ Bool
disjoint p q = maybe (const True) False (merge p q)
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The definition of the merge function is given in its entirety in Figure 4.4, but we
discuss some interesting cases inline next. For example, when one change deletes a con-
structor but the other performs a changewithin said constructorwemust check that they
operate over the same constructor. When that is the case, we must go ahead and ensure
the deletion context, ctx, and the changes in the product of atoms, at, are compatible.

merge (Del c1 ctx) (Spn (SCns c2 at)) = testEquality c1 c2 >>= 𝜆Refl→ mergeCtxAt ctx at

A (deletion) context is disjoint from a list of atoms if the patch in the hole of the
context returns the same type of element as the patch on the product of patches and they
are both disjoint. Moreover, the rest of the product of patches must consist in identity
patches. Otherwise, we risk deleting newly introduced information.

mergeCtxAt ∶∶ DelCtx 𝜅 codes iy xs→ NP (At 𝜅 codes) xs→ Maybe (Al𝜇 𝜅 codes ix iy)
mergeCtxAt (H (AlmuMin almu′) rest) (AtFix almu × xs) = do
Refl← testEquality (almuDest almu) (almuDest almu′)
x←mergeAlmu almu′ almu
guard (and $ elimNP identityAt xs)
pure x

mergeCtxAt (T at ctx) (x × xs) = guard (identityAt x) >>mergeCtxAt ctx xs

The testEquality is there to ensure the patches to be merged are producing the same
element of the mutually recursive family. This is one of the two places where we need
these checks when adapting our Agdamodel to work overmutually recursive types. The
second adaptation is shown shortly.

The mergeAtCtx function, dual to mergeCtxAt, merges a NP (At 𝜅 codes) xs and a
DelCtx 𝜅 codes iy xs into aMaybe (DelCtx 𝜅 codes iy xs), essentially preserving the T at
it finds on the recursive calls. Another interesting case happens on one of themergeSpine
cases, whose full implementation can be seen in Figure 4.5. The SChg over SCns case
must ensure we are working over the same element of the mutually recursive family,
with a testEquality ix iy. This is the second place where we need to adapt the code in the
Agda repository to work over mutually recursive types.

mergeSpine ∶∶ SNat ix→ SNat iy
→ Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes)
→ Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes)
→ Maybe (Spine 𝜅 codes (Lkup ix codes) (Lkup iy codes))

mergeSpine ix iy (SChg cx cy al) (SCns cz zs) = do Refl← testEquality ix iy
Refl← testEquality cx cz
SCns cy <$>mergeAlAt al zs
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-- Non-disjoint recursive spines:
merge (Ins ) (Ins ) = Nothing
merge (Spn (SChg )) (Del ) = Nothing
merge (Del ) (Spn (Schg )) = Nothing
merge (Del ) (Del ) = Nothing
-- Obviously disjoint recursive spines:
merge (Spn Scp) (Del c2 s2) = Just (Del c2 s2)
merge (Del c1 s2) (Spn Scp) = Just (Spn Scp)
-- Spines might be disjoint from spines and deletions:
merge (Spn s1) (Spn s2)

= Spn <$>mergeSpine (getSNat (Proxy@ix)) (getSNat (Proxy@iy)) s1 s2
merge (Spn (SCns c1 at1)) (Del c2 s2)

= Del c1 <$>mergeAtCtx at1 s2
merge (Del c1 s1) (Spn (SCns c2 at2))

= do Refl← testEquality c1 c2 -- disjoint if same constructor
mergeCtxAt s1 at2

-- Insertions are disjoint from anything except insertions.
-- Overall disjointness does depend on the recursive parts, though.
merge (Ins c1 s1) (Spn s2) = Spn ∘ SCns c1 <$>mergeCtxAlmu s1 (Spn s2)
merge (Ins c1 s1) (Del c2 s2) = Spn ∘ SCns c1 <$>mergeCtxAlmu s1 (Del c2 s2)
merge (Spn s1) (Ins c2 s2) = Ins c2 <$> (mergeAlmuCtx (Spn s1) s2)
merge (Del c1 s1) (Ins c2 s2) = Ins c2 <$> (mergeAlmuCtx (Del c1 s1) s2)

Figure 4.4: Definition of merge.

-- Non-disjoint spines:
mergeSpine (SChg ) (SChg ) = Nothing
-- Obviously disjoint spines:
mergeSpine Scp s = Just s
mergeSpine s Scp = Just Scp
-- Disjointness depends on recursive parts:
mergeSpine (SCns cx xs) (SCns cy ys) = do Refl← testEquality cx cy

SCns cx <$>mergeAts xs ys
mergeSpine (SCns cx xs) (SChg cy cz al) = do Refl← testEquality cx cy

SChg cy cz <$>mergeAtAl xs al
mergeSpine ix iy (SChg cx cy al) (SCns cz zs) = do Refl← testEquality ix iy

Refl← testEquality cx cz
SCns cy <$>mergeAlAt al zs

Figure 4.5: Definition of mergeSpine.
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4.3 Computing Patchst

In the previous sections, we have devised a typed representation for differences. We have
seen that this representation is interesting in and of itself: being richly-structured and
typed, it can be thought of as a non-trivial domain specific language whose denotation
is given by the application function. Moreover, we have seen how to merge two disjoint
differences. However, as programmers, we are mainly interested in computing patches
from a source and a destination. Unfortunately, however, this is where the good news
stops. Computing a value of type Patchst is computationally expensive and represents
one of the main downsides of this approach.

In this section we explore our attempts at computing differences with the stdiff
framework. We start by outlining a nondeterministic specification of an algorithm for
computing a Patchst, in Section 4.3.1. We then provide example algorithms that imple-
mented said specification in Section 4.3.2. All these approaches, however, need to make
choices. Moreover, the rich structure of Patchst makes a memoized algorithm much
more difficult to write. Consequently, computing a Patchst will always be a computa-
tionally inefficient process, rendering it unusable in practice.

4.3.1 Naive enumeration

The simplest option for computing a patch that transforms a tree x into y is enumerating
all possible patches and filtering our those with the smallest cost, for some cost metric.
In this section, we will write a naive enumeration engine for Patchst and argue that
regardless of the cost notion, the state space explodes quickly and becames intractable.

The enumeration follows the Agda model [74] closely and is not very surprising.
Nevertheless, it does act as a good specification for a better implementation later. Just
like for the linear case, the changes that can transform two values x and y of a given
mutually recursive family into one another are the deletion of a constructor from x, the
insertion of a constructor from y or changing the constructor of x into the one from y, as
witnessed by the enumAl𝜇 function below.

enumAl𝜇 ∶∶ Fix ki codes ix→ Fix ki codes iy→ [Al𝜇 ki codes ix iy]
enumAl𝜇 x y = enumDel (sop $ unFix x) y

<∣> enumIns x (sop $ unFix y)
<∣> Spn <$> enumSpn (snatFixIdx x) (snatFixIdx y)

(unFix x) (unFix y)
where
enumDel (Tag c p) y0 = Del c <$> enumDelCtx p y0
enumIns x0 (Tag c p) = Ins c <$> enumInsCtx x0 p
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Enumerating all the patches from a deletion context of a given product p against
some fixpoint y consists of enumerating the patches that transform all of the fields of p
into y. The handling of insertion contexts is analogous, hence it is omited here. Recall
that the AlmuMin, below, is used to flag the resulting context as a deletion context.

enumDelCtx ∶∶ PoA ki (Fix ki codes) prod→ Fix ki codes iy→ [DelCtx ki codes iy prod]
enumDelCtx Nil = [ ]
enumDelCtx (NA𝐾 x × xs) f = T (NA𝐾 x) <$> enumDelCtx xs f
enumDelCtx (NA𝐼 x × xs) f = (flip H xs ∘ AlmuMin) <$> enumAl𝜇 x f

<∣> T (NA𝐼 x) <$> enumDelCtx xs f

Next we look into enumerating the spines between x and y, that is, changes to the
coproduct structure from x to y. Unlike our Agda model, we need to know over which
element of the mutually recursive family we are operating. This will dictate which con-
structors from Spine we are allowed to use. We gather this information through two
auxiliary SNat parameters. The choice of which spine constructor to use is determinis-
tic, that is, each case is uniquely determined by a Spine constructor.

enumSpn ∶∶ SNat ix→ SNat iy
→ Rep ki (Fix ki codes) (Lkup ix codes)
→ Rep ki (Fix ki codes) (Lkup iy codes)
→ [Spine ki codes (Lkup ix codes) (Lkup iy codes)]

enumSpn six siy x y =
let Tag cx px = sop x

Tag cy py = sop y
in case testEquality six siy of
Nothing→ SChg cx cy <$> enumAl px py
Just Refl→ case testEquality cx cy of
Nothing→ SChg cx cy <$> enumAl px py
Just Refl→ if eqHO px py

then return Scp
else SCns cx <$>mapNPM (uncurry′ enumAt) (zipNP px py)

Enumerating atoms, enumAt, is trivial. Atoms are either opaque types or recursive
positions. Opaque types are handled by TrivialK and recursive positions are handled
recursively by enumAl𝜇.

enumAt ∶∶ NA ki (Fix ki codes) at→ NA ki (Fix ki codes) at→ [At ki codes at]
enumAt (NA𝐼 x) (NA𝐼 y) = AtFix <$> enumAl𝜇 x y
enumAt (NA𝐾 x) (NA𝐾 y) = return $ AtSet (Trivial x y)

Finally, product alignment is analogous to the longest common subsequence, except
that we must make sure that we only synchronize atoms with AX if they have the same
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type. The enumAl below illustrates the non-deterministic enumeration of alignments
over two products-of-atoms.

enumAl ∶∶ PoA ki (Fix ki codes) p1 → PoA ki (Fix ki codes) p2 → [Al ki codes p1 p2 ]
enumAl Nil Nil = return A0
enumAl (x × xs) Nil = ADel x <$> enumAl xs Nil
enumAl Nil (y × ys) = AIns y <$> enumAl Nil ys
enumAl (x × xs) (y × ys) = (ADel x <$> enumAl xs (y × ys))

<∣> (AIns y <$> enumAl (x × xs) ys)
<∣> case testEquality x y of

Just Refl→ AX <$> (enumAt x y) <∗> enumAl xs ys
Nothing → mzero

From the definitions of enumAl𝜇 and enumAl, it is clearwhy this algorithm explodes
and becomes intractable. In enumAl𝜇 we must choose between inserting, deleting or
copying a recursive constructor. In case we chose to copy a constructor, we then might
call enumAl, where wemust choose between inserting, deleting or copying fields of con-
structors. Wemust enumerate these options for virtually each pair of constructors in the
source and destination trees.

4.3.2 Translating from gdiff

Since enumerating all possible patches and thenfiltering a chosen one is time consuming
and requires a complex notion of cost over Patchst, it was clear we should be pursuing
better algorithms for our diff function. We have attempted two similar approaches to
filter the uninteresting patches out and optimize the search space.

A first idea, which arose in collaboration with Pierre-Evariste Dagand (private com-
munication), was to use the already existingUNIX diff tool as some sort of oracle. That
is, we should only consider inserting and deleting elements that fall on lines marked as
such by UNIX diff. This idea was translated into Haskell by Garuffi [36], but the per-
formance was still very poor and computing the Patchst of two real-world Clojure files
still required several minutes.

From Garuffi’s experiments [36] we learnt that simply restricting the search space
was not sufficient. Besides the complexity introduced by arbitrary heuristics, using the
UNIX diff to flag elements of the AST was still too coarse. For one, the UNIX diff
can insert and delete the same line in some situations. Secondly, many elements of the
AST may fall on the same line.

The second option is related, but instead of using a line-based oracle, we can use
gdiff (Section 3.1.4) as the oracle, enabling us to annotate every node of the source
and destination trees with information about whether that node was copied or not. This
strategy was translated into Haskell by Van Putten [92] as part of his MSc work. The gist
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of it is that we can use annotated fixpoints to tag each constructor of a tree with added
information. In this case, we are interested in whether this node would be copied or not
by gdiff:

data Ann = Modify ∣ Copy

A Modify annotation corresponds to a deletion or insertion depending on whether
it is the source or destination tree respectively. Recall that an edit-script produced by
gdiff has type ES 𝜅 codes xs ys, where xs is the list of types of the source trees and ys is
the list of types of the destination trees. The definition ofES – introduced in Section 3.1.4
– is repeated below.

data ES 𝜅 codes ∶∶ [Atom kon] → [Atom kon] → ∗ where
ES0 ∶∶ ES 𝜅 codes ′[ ] ′[ ]
Ins ∶∶ Cof 𝜅 codes a t→ ES 𝜅 codes i (t ∶++∶ j) → ES 𝜅 codes i (a ′∶ j)
Del ∶∶ Cof 𝜅 codes a t→ ES 𝜅 codes (t ∶++∶ i) j → ES 𝜅 codes (a ′∶ i) j
Cpy ∶∶ Cof 𝜅 codes a t→ ES 𝜅 codes (t ∶++∶ i) (t ∶++∶ j) → ES 𝜅 codes (a ′∶ i) (a ′∶ j)

Given a value of type ES 𝜅 codes xs ys, we have information about which construc-
tors of the trees in NP (NA 𝜅 (Fix 𝜅 codes)) xs should be copied. Our objective then is
to annotate the trees with this very information. This is done by the annSrc and annDst
functions. We will only look at annSrc, the definition of annDst is symmetric.

Annotating the source forest with a given edit-script consists inmatchingwhich con-
structors present in the forest correspond to a copy and which correspond to a deletion.
The insertions in the edit-script concern the destination forest only. The annSrc func-
tion, below, does exactly that, proceeding by induction on the edit-script.

annSrc ∶∶ NP (NA 𝜅 (Fix 𝜅 codes)) xs→ ES 𝜅 codes xs ys
→ NP (NA 𝜅 (FixAnn 𝜅 codes (Const Ann))) xs

annSrc xs ES0 = Nil
annSrc Nil = Nil
annSrc xs (Ins c es) = annSrc′ xs es
annSrc (x × xs) (Del c es) = let poa = fromJust $matchCof c x
in insCofAnn c (Const Modify) (annSrc′ (appendNP poa xs) es)

annSrc′ (x × xs) (Cpy c es) = let poa = fromJust $matchCof c x
in insCofAnn c (Const Copy) (annSrc′ (appendNP poa xs) es)

The deterministic diff function for Al𝜇 starts by checking the annotations present at
the root of its argument trees. In case both are copies, we start with a spine. If at least
one of them is not a copy we insert or delete the constructor not flagged as a copy. We
must guard for the case that there exists a copy in the inserted or deleted subtree. In
case that does not hold, we would not be able to choose an argument of the inserted
or deleted constructor to continue diffing against, in diffCtx. When there are no more
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copies to be performed, we just return a stiff patch, which deletes the entire source and
inserts the entire destination tree.

diffAlmu ∶∶ FixAnn 𝜅 codes (Const Ann) ix→ FixAnn 𝜅 codes (Const Ann) iy
→ Al𝜇 𝜅 codes ix iy

diffAlmu x@(FixAnn ann1 rep1) y@(FixAnn ann2 rep2) =
case (getAnn ann1 , getAnn ann2) of
(Copy , Copy) → Spn (diffSpine (getSNat $ Proxy@ix)

(getSNat $ Proxy@iy)
rep1 rep2)

(Copy ,Modify) → if hasCopies y then diffIns x rep2
else stiffAlmu (forgetAnn x) (forgetAnn y)

(Modify , Copy) → if hasCopies x then diffDel rep1 y
else stiffAlmu (forgetAnn x) (forgetAnn y)

(Modify ,Modify) → if hasCopies x then diffDel rep1 y
else stiffAlmu (forgetAnn x) (forgetAnn y)

where
diffIns x rep = case sop rep of Tag c ys→ Ins c (diffCtx CtxIns x ys)
diffDel rep y = case sop rep of Tag c xs→ Del c (diffCtx CtxDel y xs)

The diffCtx function selects an element of a product to continue diffing against. We
naturally select the element that has the most constructors marked for copy as the el-
ement we continue diffing against. The other fields of the product are placed on the
rigid part of the context, that is, the trees that will be deleted or inserted in their entirety,
without sharing any of their subtrees.

diffCtx ∶∶ InsOrDel 𝜅 codes p→ FixAnn 𝜅 codes (Const Ann) ix
→ NP (NA 𝜅 (FixAnn 𝜅 codes (Const Ann))) xs
→ Ctx 𝜅 codes p ix xs

The other functions for translating twoFixAnn 𝜅 codes (Const Ann) ix into aPatchst
are straightforward and follow a similar reasoning process: extract the annotations and
defer copies until both source and destination annotation flag a copy.

This version of the diff function runs in 𝒪(𝑛2) time, where 𝑛 is the the number of
constructors in the bigger input tree. Although orders of magnitude better than naive
enumeration or using the UNIX diff as an oracle, a quadratic algorithm is still not
practical, particularly when 𝑛 tends do be large – real-world source files have tens of
thousands abstract syntax elements.
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4.4 Discussion

With stdiffwe learned that the difficulties of edit-script based approaches are not due,
exclusively, to using linear data to represent transformations to tree structured data. An-
other important aspect that we unknowingly overlooked, and ultimately did lead to a
prohibitively expensive diff function, was the necessity to choose a single copy opportu-
nity. This happens whenever a subtree could be copied in two or more different ways,
and, in tree differencing this occurs often. For example, think of all the places that a call
to a logging function log err msg could be copied in a large source-file; or all of the +1
expressions.

The Patchst datatype hasmany interesting aspects that deserve somemention. First,
by being globally synchronized – that is, explicit insertions and deletions with one hole –
these patches are easy tomerge. Moreover, we have seen that it is possible, and desirable,
to encode patches as homogeneous types: a patch transforms two values of the same
member of the mutually recursive family.

In conclusion, lacking an efficient diff algorithm meant that stdiff was an impor-
tant step leading to new insights, but unfortunatelywas notworth pursuing further. This
meant that a number of interesting topics such as the algebra of Patchst and the notion
of cost for Patchst were abandoned indefinitely.
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The stdiff approach gave us a first representation of tree-structured patches over tree-
structured data but was still deeply connected to edit-scripts: subtrees could only be
copied once and could not be permuted. This means we still suffered from ambiguous
patches, and, consequently, a computationally expensive diff algorithm. Overcoming
the drawback of ambiguity requires a shift in perspective and abandoning edit-script
based differencing algorithms. In this section we will explore the hdiff approach,
where patches allow for trees to be arbitrarily permuted, duplicated or contracted (con-
tractions are dual to duplications).

Classical tree differencing algorithms start with the computation of tree matchings
(Section 2.1.2), which identify the subtrees that should be copied. These tree matchings,
however, must be restricted to order-preserving partial injections to be efficiently trans-
lated to edit-scripts later. The hdiff approach never translates to edit-scripts, which
means the tree matchings we compute are not subject to any restrictions. In fact, hdiff
uses these unrestricted tree matchings as the patch, instead of translating them into a
patch.

Suppose we want to describe a change that modifies the left element of a binary tree.
If we had the full Haskell programming language available as the patch language, we
could write something similar to function c, in Figure 5.1(a). Observing the function c
we see it has a clear domain – a set of Trees that when applied to c yields a Just – which
is specified by the pattern and guards. Then, for each tree in the domain we compute
a corresponding tree in the codomain. The new tree is obtained from the old tree by
replacing the 10 by 42 in-place. Closely inspecting this definition, we can interpret the
matching of the pattern as a deletion phase and the construction of the resulting tree as a
insertionphase. Thehdiff approach represents the change in c exactly as that: a pattern
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c ∶∶ Tree→ Maybe Tree
c (Bin (Leaf x) y)

∣ x ≡ 10 = Just (Bin (Leaf 42) y)
∣ otherwise = Nothing

c = Nothing
(a) Haskell function c

Bin

Leaf

10

#𝑦

Bin

Leaf

42

#𝑦

↦

(b) c represented as a change

Figure 5.1: Haskell function and its graphical representation as a change. The change
here modifies the left child of a binary node. Notation #y is used to indicate y is a
metavariable.

and a expression. Essentially, we write c as Chg (Bin (Leaf 10) y) (Bin (Leaf 42) y) –
represented graphically as in Figure 5.1(b).

With the added expressivity of referring to subtrees with metavariables we can rep-
resent more transformations than before. Take, for example, the change that swaps
two subtrees – which cannot be written using an edit-script based approach – given
by Chg (Bin x y) (Bin y x). Another helpful consequence of our design is that we
effectively bypass the choice phase of the algorithm. When computing the differences
between Bin Leaf Leaf and Leaf, for example, we do not have to chose one Leaf to copy
because we can copy both with the help of a contraction operation, with a change such
as: Chg (Bin x x) x. This aspect is crucial and enables us to write a linear diff algorithm.

In this chapter we explore the representation and computation aspects of hdiff.
The big shift in paradigm of hdiff also requires amore careful look into themetatheory
and nuances of the algorithm, which were not present in our original paper [76]. The
material in this chapter is developed from our ICFP’19 publication [76], shifting to the
generics-simplistic library.

5.1 Changes

5.1.1 A Concrete Example

Before exploring the generic implementation of our algorithm, let us look at a simple,
concrete instance first, which sets the stage for the generic implementation that will
follow. Throughout this section we will explore the central ideas from our algorithm
instantiated for a type of 2-3-trees:

data Tree = Leaf Int ∣ Bin Tree Tree ∣ Tri Tree Tree Tree
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Bin

#0 #1

Bin

#1 #0

↦

(a) diff (Bin t u) (Bin u t)

Bin

#0 #1

Tri

#0 a #1

↦

(b) diff (Bin t u) (Tri t a u)

Figure 5.2: Illustration of two changes. Metavariables are denoted with #x.

The central concept of hdiff is the encoding of a change. Unlike previous work [55,
74, 50]which is based on tree-edit-distance [16] andhence uses only insertions, deletions
and copies of the constructors encountered during the preorder traversal of a tree (Sec-
tion 3.1.4), we go a step further. We explicitly model permutations, duplications and
contractions of subtrees within our notion of change, where contraction here denotes
the partial inverse of a duplication. The representation of a change between two values
of type Tree, then, is given by identifying the bits and pieces that must be copied from
source to destination making use of permutations and duplications where necessary.

A new datatype, TreeC 𝜑, enables us to annotate a value of Treewith holes of type 𝜑.
Therefore, TreeC Metavar represents the type of Treewith holes carrying metavariables.
These metavariables correspond to arbitrary trees that are common subtrees of both the
source and destination of the change. These are exactly the bits that are being copied
from the source to the destination tree. We refer to a value of TreeC as a context. For now,
themetavariables will be simple Int values but later on they will need to carry additional
information.

type Metavar = Int
data TreeC 𝜑 = Hole 𝜑

∣ LeafC Int
∣ BinC TreeC TreeC
∣ TriC TreeC TreeC TreeC

A change in this setting is a pair of such contexts. The first context defines a pattern
that binds some metavariables, called the deletion context; the second, called the inser-
tion context, corresponds to the tree annotated with themetavariables that are supposed
to be instantiated by the bindings given by the deletion context.

type Change 𝜑 = (TreeC 𝜑 , TreeC 𝜑)

The change that transforms Bin t u into Bin u t, for example, is represented by a pair
of TreeC, (BinC (Hole 0) (Hole 1) , BinC (Hole 1) (Hole 0)), as seen in Figure 5.2. This
change works on any tree built using the Bin constructor and swaps the children of the
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root. Note that it is impossible to define such swap operations in terms of insertions and
deletions—as used by most diff algorithms.

5.1.1.1 Applying Changes

Applying a change to a tree is done by unifying the metavariables in the deletion context
with said tree, and later instantiating the insertion contextwith the obtained substitution.
Later on, when we come to the generic setting, we will write the application function
using syntactic unification [94]. For this concrete example, we will continue with the
definition below.

chgApply ∶∶ Change Metavar→ Tree→ Maybe Tree
chgApply (d , i) x = del d x >>= ins i

Naturally, if the term x and the deletion context d are incompatible, this operation
will fail. Contrary to regular pattern-matching, we allow variables to appear more than
once on both the deletion and insertion contexts, i.e., the contexts are non-linear. Their
semantics are dual: duplicate variables in the deletion context must match equal trees,
and are referred to as contractions, whereas duplicate variables in the insertion context
will duplicate trees. Given a deletion context ctx and source tree t, the del function tries
to associate all the metavariables in the context with a subtree of the input tree. This can
be done with standard unification algorithms, as will be the case in the generic setting.
Here, however, we use a simple auxiliary function to do so.

del ∶∶ TreeC Metavar→ Tree→ Maybe (Map Metavar Tree)
del ctx t = go ctx t empty

The go function, defined below, closely follows the structure of trees and contexts.
Onlywhenwe reach aHolewe checkwhetherwe have already instantiated themetavari-
able stored there or not. If we encountered this metavariable before, we check that its
previous occurrences correspond to the same tree; if this is the first time we encounter
this metavariable, we instantiate the metavariable with the current tree.

go ∶∶ TreeC→ Tree→ Map Metavar Tree→ Maybe (Map Metavar Tree)
go (LeafC n) (Leaf n′) m = guard (n ≡ n′) >> return m
go (BinC x y) (Bin a b) m = go x a m >>= go y b
go (TriC x y z) (Tri a b c) m = go x a m >>= go y b >>= go z c
go (Hole i) t m = case lookup i m of

Nothing→ return (M.insert i t m)
Just t′ → guard (t ≡ t′) >> return m

go m = Nothing
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Once we have computed the substitution that unifies ctx and t, above, we instantiate
the variables in the insertion context with their respective values to obtain the resulting
tree. The ins function, defined below, performs this instantiation and fails only if the
change contains unbound variables.

ins ∶∶ TreeC Metavar→ Map Metavar Tree→ Maybe Tree
ins (LeafC n) m = return (Leaf n)
ins (BinC x y) m = Bin <$> ins x m <∗> ins y m
ins (TriC x y z) m = Tri <$> ins x m <∗> ins y m <∗> ins z m
ins (Hole i) m = lookup i m

5.1.1.2 Computing Changes

Next we will define the chgTree function, which produces a change from a source and a
destination. Intuitively, the chgTree function should try to exploit as many copy oppor-
tunities as possible. For now, we delegate the decision of whether a subtree should be
copied or not to an oracle: assume we have access to a function wcs ∶∶ Tree → Tree →
Tree → Maybe Metavar, short for “which common subtree”. The call wcs s d x returns
Nothing when x is not a subtree of s and d; if x is a subtree of both s and d, it returns
Just i, for some metavariable i. The only condition we impose is injectivity of wcs s d:
that is, if wcs s d x ≡ wcs s d y ≡ Just j, then x ≡ y. In other words, equal metavariables
correspond to equal subtrees.

There is an obvious inefficient implementation for wcs, that traverses both trees
searching for shared subtrees – hence postulating the existence of such an oracle is not a
particularly strong assumption tomake. In Section 5.1.1.3, we provide an efficient imple-
mentation. For now, assuming the oracle exists allows for a clear separation of concerns.
The chgTree function merely has to compute the deletion and insertion contexts, using
said oracle – the inner workings of the oracle are abstracted away cleanly.

chgTree ∶∶ Tree→ Tree→ Change Metavar
chgTree s d = let f = wcs s d

in (extract f s , extract f d)

The extract function receives an oracle and a tree. It traverses its argument tree,
looking for opportunities to copy subtrees. It repeatedly consults the oracle, to determine
whether or not the current subtree should be shared across the source and destination.
If that is the case, we want our change to copy such subtree. That is, we return a Hole
whenever the second argument of extract is a common subtree according to the oracle.



84 5.1 CHANGES

Bin

Bin

t u

k

(a) s

Bin

Bin

t u

t

(b) d

wcs s d (Bin t u) = Just #x

wcs s d t = Just #y

wcs s d u = Just #z

wcs = Nothing

(c) Illustration of wcs s d

Bin

#𝑥 k

Bin

#𝑥 #𝑦

↦

(d) Result of chg s d

Figure 5.3: Context extraction must care to produce well-formed changes. The nested
occurrence of t within Bin t u here yields a change with an undefined variable on its
insertion context.

If the oracle returns Nothing, we move the topmost constructor to the context being
computed and recurse over the remaining subtrees.

extract ∶∶ (Tree→ Maybe Metavar) → Tree→ TreeC Metavar
extract o t = maybe (peel t) Hole (o t)
where peel (Leaf n) = LeafC n

peel (Bin a b) = BinC (extract o a) (extract o b)
peel (Tri a b c) = TriC (extract o a) (extract o b) (extract o c)

Note that by adopting a version of wcs that only returns a boolean value we would
not know what metavariable to use when a subtree is shared. Returning a value that
uniquely identifies a subtree allows us to keep the extract function linear in the number
of constructors in x (disregarding the calls to our oracle for the moment).

This iteration of the chgTree function has a subtle bug, however. It does not produce
correct changes, that is, it is not the case that apply (chg s d) s ≡ Just d for all s and
d. The problem can be observed when we pass a source and a destination tree where a
common subtree occurs by itself but also as a subtree of another common subtree. Such
situation is illustrated in Figure 5.3. In particular, the patch shown in Figure 5.3(d)
cannot be applied since the deletion context does not instantiate the metavariable #y,
which is required by the insertion context.

There are many ways to address the issue illustrated in Figure 5.3. We could replace
#y by t and ignore the sharing orwe could replace#x byBin #y #z, pushing themetavari-
ables to the leaves maximizing sharing. These would give rise to the changes shown in
Figure 5.4. There is a clear dichotomy between wanting tomaximize the spine but at the
same time wanting to copy the larger trees, closer to the root. On the one hand, copies
closer to the root are intuitively easier to merge and less sharing means it is easier to iso-
late changes to separate parts of the tree. On the other hand, sharing asmuch as possible
might capture the change being represented more closely.

A third, perhaps less intuitive, solution to the problem in Figure 5.3 is to only shares
uniquely occurring subtrees, effectively simulating the UNIX diffwith the patience
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Figure 5.4: Two potential solutions to the problem of nested common subtrees, illus-
trated in Figure 5.3.

option, which only copies uniquely occurring lines. In fact, to make this easy to exper-
iment with, we will parameterize our final extract with which context extraction mode
should be used to computing changes.

data ExtractionMode = NoNested
∣ ProperShare
∣ Patience

The NoNestedmode will forget sharing in favor of copying larger subtrees. It would
drop the sharing of t producing Figure 5.4(a). The ProperShare mode is the opposite.
It would produce Figure 5.4(b). Finally, Patience only share subtrees that occur only
once in the source and once in the destination. For the inputs in Figure 5.3, extracting
contexts under Patiencemode would produce the same result as NoNested, but they are
not the same in general. In fact, Figure 5.5 illustrates the changes thatwould be extracted
following each ExtractionMode for the same source and destination.

In short, the extract function receives the sharing map and extracts the deletion and
insertion context making up the change, caring that the produced change is well-scoped.
Wewill give the final extract functionwhenwe get to its generic implementation. For the
time being, let usmove on to the intuition behind computing thewcs function efficiently
for the concrete case of the Tree datatype.

5.1.1.3 Defining the Oracle for Tree

In order to have aworking version of our differencing algorithm forTreewemust provide
the wcs implementation, with type Tree → Tree → Tree → Maybe Metavar. Given a
fixed s and d, wcs s d x returns Just i if x is the 𝑖th subtree of s and d andNothing if x does
not appear in s ord. One implementation of this function computes the intersection of all
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Figure 5.5: Different extraction methods for the same pair or trees.

the subtrees in s andd, and then searches for the subtree x the resulting list. Enumerating
all the subtrees of any Tree is straightforward:

subtrees ∶∶ Tree→ [Tree]

It is now easy to implement the wcs function: we compute the intersection of all the
subtrees of s and d and use this list to determine whether the argument tree occurs in
both s and d. This check is done with elemIndexwhich returns the index of the element
when it occurs in the list.

wcs ∶∶ Tree→ Tree→ Tree→ Maybe Metavar
wcs s d x = elemIndex x (subtrees s ∩ subtrees d)

This specification, however, is not particularly efficient. The inefficiency comes from
two places: computing subtrees s ∩ subtrees d is expensive but could be cached, but the
call to elemIndex x will be repeated for each subtree of s and d when extracting the
contexts. This means that the overall algorithm will be close to exponential. In fact,
given how often we need to call wcs, each call tomust run in amortized constant time if
we want our algorithm to be efficient.

Defining wcs s d efficiently consists, firstly, of computing a set of trees which con-
tains the subtrees of s and d, and secondly, in being able to efficiently query this set for
membership. Symbolic manipulation software, such as Computer Algebra Systems, per-
form similar computations frequently and their performance is just as important. These
systems often rely on a technique known as hash-consing [39, 33], which is part of the
canon of programming folklore. Hash-consing arises as a means of maximal sharing
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of subtrees in memory and constant time comparison – two trees are equal if they are
stored in the same memory location – but it is by far not limited to it. We will be using
a variant of hash-consing to define wcs s d.

To efficiently compare trees for equality we will be using cryptographic hash func-
tions [69] to construct a fixed length bitstring that uniquely identifies a treemodulo hash
collisions. Said identifier will be the hash of the root of the tree, which will depend on
the hash of every subtree, much like a merkle tree [70]. Suppose we have a function
merkleRoot that computes some suitable identifier for every tree, we can compare trees
efficiently by comparing their associated identifiers:

instance Eq Tree where
t ≡ u = merkleRoot t ≡ merkleRoot u

The definition of merkleRoot function is straightforward. It is important that we
use the merkleRoot of the parts of a Tree to compute the merkleRoot of the whole. This
construction, when coupled with a cryptographic hash function, call it hash, is what
guarantee injectivity modulo hash collisions.

merkleRoot ∶∶ Tree→ Digest
merkleRoot (LeafH n) = hash (concat [“1” , encode n])
merkleRoot (Bin x y) = hash (concat [“2” ,merkleRoot x ,merkleRoot y])
merkleRoot (Tri x y z) = hash (concat [“3” ,merkleRoot x ,merkleRoot y ,merkleRoot z])

Note that although it is theoretically possible to have false positives, when using a
cryptographic hash function the chance of collision is negligible and hence, in practice,
they never happen [69]. Nonetheless, it would be easy to detect when a collision has
occurred in our algorithm; consequently, we chose to ignore this issue.

Recall we are striving for a constant time comparison, but the (≡) definition compar-
ing merkle roots is still linear as it must recompute themerkleRoot on every comparison.
We fix this by caching the hash associated with every node of a Tree. This is done by the
decorate function, illustrated Figure 5.6.

type TreeH = (TreeH′ , Digest)
data TreeH′ = LeafH Int

∣ BinH TreeH TreeH
∣ TriH TreeH TreeH TreeH

decorate ∶∶ Tree→ TreeH

We omit the implementation of decorate for now, even if it is straightforward. More-
over, a generic version is introduced in Section 5.1.4. The TreeH datatype carries round
themerkleRoot of its first component, hence, enabling us to define (≡) in constant time.
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Figure 5.6: Example of decorating a tree with hashes, through the decorate function.

The second source of inefficiency, enumerating all possible subtrees, can be addressed
by choosing a better data structure. To check whether a tree x is a subtree of a fixed s
and d, it suffices to check whether the merkle root of x appears in a “database” of the
commonmerkle roots of s and d. Given that aDigest is just a [Word], the optimal choice
for such “database” is a Trie [19] mapping a [Word] to aMetavar. Trie lookups are effi-
cient and hardly depend on the number of elements in the trie. In fact, our lookups run
in amortized constant time here, as the length of a Digest is fixed.

Finally, we are able to write our efficient wcs oracle that concludes the implemen-
tation of our algorithm for the concrete Tree type. The wcs oracle will now receive
TreeH, i.e., trees annotated with their merkle roots at every node, and will populate the
“database” of common digests.

wcs ∶∶ TreeH→ TreeH→ TreeH→ Maybe Metavar
wcs s d = lookup (mkTrie s ∩ mkTrie d) ∘merkleRoot
where (∩) ∶∶ Trie k v→ Trie k u→ Trie k v -- key inter., keep left values.

lookup ∶∶ Trie k v→ [k] → Maybe v
mkTrie ∶∶ TreeH → Trie Word Metavar

The use of cryptographic hashes is unsurprising. They are almost folklore for speed-
ing up a variety of computations. It is important to note that the efficiency of the al-
gorithm comes from the novel representation of patches combined with an amortized
constant time wcs function. Without being able to duplicate or permute subtrees, the
algorithm would have to backtrack in a number of situations.

5.1.2 Representing Changes Generically

Having seen how TreeC played a crucial role in defining changes for the Tree datatype,
we continue with its generic implementation. In this section, we generalize the con-
struction of contexts to any datatype supported by the generics-simplistic library.
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Recall that a context over a datatype T is just a value of T augmented with an addi-
tional constructor used to represent holes. This can be done with the free monad con-
struction provided by the generics-simplistic library: HolesAnn 𝜅 fam ann h
datatype (Section 3.2.3) is a free monad in h. We recall its definition ignoring annota-
tions below.

data Holes 𝜅 fam h a where
Hole ∶∶ h a→ Holes 𝜅 fam h a
Prim ∶∶ (PrimCnstr 𝜅 fam a) ⇒ a → Holes 𝜅 fam h a
Roll ∶∶ (CompoundCnstr 𝜅 fam a) ⇒ SRep (Holes 𝜅 fam h) (Rep a) → Holes 𝜅 fam h a

The TreeC Metavar datatype, defined in Section 5.1.1 to represent a value of type
Tree augmented with metavariables is isomorphic to Holes ′[Int] ′[Tree] (Const Int).
Abstracting over the specific family for Tree, the datatype Holes 𝜅 fam (Const Int) gives
a functor mapping an element of the family into its representation augmented with in-
tegers, which represent metavariables. But in this generic setting, it does not yet enable
us to infer whether a metavariable matches over an opaque type or a recursive position,
which will come to be important soon. Consequently, we will keep the information
about whether the metavariable matches over an opaque value or not:

data Metavar 𝜅 fam at where
#𝜅
⋅ ∶∶ (PrimCnstr 𝜅 fam at)

⇒ Int→ Metavar 𝜅 fam at
#fam
⋅ ∶∶ (CompoundCnstr 𝜅 fam at)

⇒ Int→ Metavar 𝜅 fam at

With Metavar above, we can always retrieve the Int identifying the metavar, with
themetavarGet function, but wemaintain all the type-level information wemay need to
inspect at run-time. The HolesMV datatype below is convenient since most of the times
our Holes structures will contain metavariables.

metavarGet ∶∶ Metavar 𝜅 fam at→ Int
type HolesMV 𝜅 fam = Holes 𝜅 fam (Metavar 𝜅 fam)

A change consists of a pair of a deletion context and an insertion context for the same
type. These contexts are values of the mutually recursive family in question, augmented
with metavariables.

data Chg 𝜅 fam at = Chg { ⋅del ∶∶ HolesMV 𝜅 fam at
, ⋅ins ∶∶ HolesMV 𝜅 fam at
}
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Applying a generic change c to an element x consists in unifying x with cdel, yield-
ing a substitution 𝜎 which can be applied to cins. This provides the usual denotational
semantics of changes as partial functions.

chgApply ∶∶ (All Eq 𝜅) ⇒ Chg 𝜅 fam at→ SFix 𝜅 fam at→ Maybe (SFix 𝜅 fam at)
chgApply (Chg d i) x = either (const Nothing) (holesMapM uninstHole ∘ flip substApply i)

(unify d (sfixToHoles x))
where uninstHole = error “uninstantiated hole: (Chg d i) not well-scoped!”

In a call to chgApply c x, since x has no holes, a successful unification means 𝜎
assigns a term (no holes) for each metavariable in cdel. In turn, when applying 𝜎 to
cins we must guarantee that every metavariable in cins gets substituted, yielding a term
with no holes as a result. Attempting to apply a non-well-scoped change is a violation
of the contract of applyChg. We throw an error in that case and distinguish it from a
change c not being able to be applied to x because x is not an element of the domain
of c. The uninstHole above will be called in the precise situation where holes were left
uninstantiated in substApply 𝜎 cins.

In general, we expect a value of type Chg to be well-scoped, that is, all the variables
that are present in the insertion context must also occur on the deletion context, in
Haskell:

vars ∶∶ HolesMV 𝜅 fam at→ Map Int Arity
wellscoped ∶∶ Chg 𝜅 fam at→ Bool
wellscoped (Chg d i) = keys (vars i) ≡ keys (vars d)

This definition of well-scoped changes was chosen due to its simplicity. If we know
a given variable has arity 2, for example, then it must be a copy. Had we defined well-
scoped changes by keys (vars i) ⊆ keys (vars d), a variable with arity 2 could have both
its ocurrences in the deletion context. This would make the merging algorithm even
more involved.

A Chg is very similar to a tree matching (Section 2.1.2) with less restrictions. In
other words, it arbitrarily maps subtrees from the source to the destination. From an
algebraic point of view, this already gives us a desirable structure, as wewill explore next
in Section 5.1.3. In fact, we argue that there is no need to translate the treematching into
an edit-script, like most traditional algorithms do. The tree matching should be used as
the representation of change.

5.1.3 Meta Theory

In this section we will look into how Chg admits a simple composition operation which
makes a partial monoid. Through the remainder of this section we will assume changes
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Figure 5.7: Example of change composition. The composition usually can be applied to
less elements than its parts and is clearly not commutative.

have all been 𝛼-converted to never capture names and denote the application function of
a change, applyChg c, as JcK . We will also abuse notation and denote substApply 𝜎 p by
𝜎 p, whenever the contextmakes it clear that 𝜎 is a substitution. Finally, wewill abide by
the Barendregt convention [13] in our proofs and metatheory – that is, all changes that
appear in some mathematical context have their bound variable names independent of
each other, to put it differently, no two changes will accidentally share a variable name.

The composition of two changes, say, p after q, returns a change that maps a subset
of the domain of q into a subset of the image of p. Figure 5.7, for example, illustrates
two changes and their two different compositions. In the case of Figure 5.7 both p • q
and q • p exist, but this is not the case generally. The composition of two changes p • q is
defined if and only if the image of JqK has some elements in common with the domain
of JpK . In other words, when qins is unifiable with pdel. In fact, let 𝜎 = unify qins pdel,
the composition p • q is given by Chg (𝜎 qdel) (𝜎 pins).

(•) ∶∶ Chg 𝜅 fam at→ Chg 𝜅 fam at→ Maybe (Chg 𝜅 fam at)
p • q = case unify pdel qins of
Left → Nothing
Right 𝜎 → Just (Chg (substApply 𝜎 qdel) (substApply 𝜎 pins))

Note that it is inherent that purely structural composition of two changes p after
q yields a change, p • q, that potentially misses sharing opportunities. Imagine that p
inserts a subtree t that was deleted by q. Our composition algorithm possesses no infor-
mation that this t is to be treated as a copy. This also occurs in the edit-script universe:
composing patches yields worse patches than recomputing differences. We can imagine
that a more complicated composition algorithm might be able to recover the copies in
those situations.

We do not particularly care whether composition produces the best change possible
or not. We do not even have a notion of best at the moment. It is vital, however, that it
produces a correct change. That is, the composition of two patches is indistinguishable
from the composition of their application functions.



92 5.1 CHANGES

Lemma 5.1.1 (Composition Correct). For any changes p and q and trees x and y aptly
typed; we have Jp • qK x ≡ Just y if and only if ∃ z . JqK x ≡ Just z ∧ JpK z ≡ Just y.

Proof. if. Assuming Jp•qK x ≡ Just y, we want to prove there exists z such that JqK x ≡
Just z and JpK z ≡ Just y. Let 𝜎 be the result of unify pdel qins, witnessing p•q; let
𝛾 be the result of unify (𝜎 qdel) x, witnessing the application. Take z = (𝛾 ∘ 𝜎) qins,
and let us prove 𝛾 ∘ 𝜎 unifies pdel and z.

(𝛾 ∘ 𝜎) pdel ≡ (𝛾 ∘ 𝜎) z {z has no variables}
⟺ (𝛾 ∘ 𝜎) pdel ≡ z {definition of z}
⟺ (𝛾 (𝜎 pdel) ≡ 𝛾 (𝜎 qins) {hypothesis}
⟸ 𝜎 pdel ≡ 𝜎 qins

Hence, p can be applied to z, resulting in (𝛾 ∘ 𝜎) pins, which is equal to y (hyp).

only if. Assuming there exists z such that JqK x ≡ Just z and JpK z ≡ Just y, we want
to prove that Jp • qK x ≡ Just y. Let 𝛼 be such that 𝛼 qdel ≡ x, hence, z ≡ 𝛼 qins;
Let 𝛽 be such that 𝛽 pdel ≡ z, hence y ≡ 𝛽 pins.

a) First we prove that p • q is defined, that is, there exists 𝜎′ that unifies qins
and pdel. Recall 𝛼 and 𝛽 have disjoint variables because we assume p and q
have a disjoint set of names. Let 𝜎′ = 𝛼 ∪ 𝛽, which corresponds to 𝛼 ∘ 𝛽 or
𝛽 ∘ 𝛼 because they have disjoint sets of names.

𝜎′ qins ≡ 𝛼 qins ≡ z ≡ 𝛽 pdel ≡ 𝜎′ pdel

Since 𝜎′ unifies qins and pdel, let 𝜎 be theirmost general unifier. Then, 𝜎′ ≡
𝛾 ∘ 𝜎 for some 𝛾 and p • q ≡ Chg (𝜎 qdel) (𝜎 pins).

b) Next we prove Jp • qK x ≡ Just y. First we prove 𝜎 qdel unifies with x.

x ≡ 𝛽 qdel {Disj. supports;Def. 𝜎′}
⟺ x ≡ 𝛾 (𝜎 qdel) {x has no variables}
⟺ 𝛾 x ≡ 𝛾 (𝜎 qdel)

Hence, Jp • qK x evaluates to 𝛾 (𝜎 pins). Proving it coincides with y is a
straightforward calculation:

𝛾 (𝜎 pins) ≡ y {Def. y}
⟺ 𝛾 (𝜎 pins) ≡ 𝛼 pins {Disj. supports;Def. 𝜎′}
⟺ 𝛾 (𝜎 pins) ≡ 𝛾 (𝜎 pins)
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Once we have established that composition is correct with respect to application, we
would like to ensure composition is associative. But first we need to specify what we
mean by equal changes. We will consider an extensional equality over changes. Two
changes are said to be equivalent if and only if they are indistinguishable through their
application semantics.

Definition 5.1.1 (Change Equivalent). Two changes p and q are said to be equivalent,
denoted p ≈ q, if and only if ∀ x . JpK x ≡ JqK x

Lemma 5.1.2 (Definability of Composition). Let p, q and r be aptly typed changes, then,
(p • q) • r is defined if and only if p • (q • r) is defined.

Proof. if. Assuming (p • q) • r is defined, Let 𝜎 and 𝜃 be such that 𝜎 pdel ≡ 𝜎 qins and
𝜃 (𝜎 qdel) ≡ 𝜃 rins. We must prove that (a) rins unifies with qdel through some
substitution 𝜃′ and (b) 𝜎′ qins unifies with pdel. Take 𝜃′ = 𝜃 ∘ 𝜎, then:

(𝜃 ∘ 𝜎) rins ≡ (𝜃 ∘ 𝜎) qdel {support 𝜎 ∩ vars r ≡ ∅}
⟺ 𝜃 rins ≡ (𝜃 ∘ 𝜎) qdel

Let 𝜁 be the idempotentmost general unifier of rins and qdel, it follows that 𝜃′ = 𝛾∘𝜁
for some 𝛾. Consequently, q • r = Chg (𝜁 rdel) (𝜁 qins).
Now, wemust construct 𝜎′ to unify pdel and 𝜁 qins, which enables the construction
of p • (q • r). Let 𝜎′ = 𝜃 ∘ 𝜎 and reduce it to one of our assumptions:

𝜃 (𝜎 pdel) ≡ 𝜃 (𝜎 (𝜁 qins)) {𝜃 ∘ 𝜎 ≡ 𝛾 ∘ 𝜁}
⟺ 𝜃 (𝜎 pdel) ≡ 𝛾 (𝜁 (𝜁 qins)) {𝜁 idempotent}
⟺ 𝜃 (𝜎 pdel) ≡ 𝛾 (𝜁 qins) {𝜃 ∘ 𝜎 ≡ 𝛾 ∘ 𝜁}
⟺ 𝜃 (𝜎 pdel) ≡ 𝜃 (𝜎 qins)
⟸ 𝜎 pdel ≡ 𝜎 qins

only if. Analogous.

Lemma 5.1.3 (Associativity of Composition). Let p, q and r be aptly typed changes such
that (p • q) • r is defined, then (p • q) • r ≈ p • (q • r).

Proof. Straightforward application of Lemma 5.1.2 and Lemma 5.1.1.

Lemma 5.1.4 (Identity of Composition). Let p be a change, then 𝜖 = Chg #x #x is the
identity of composition. That is, p • 𝜖 ≈ p ≈ 𝜖 • p.

Proof. Trivial; 𝜖 unifies with all possible terms.
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Figure 5.8: Example of a change, its inverse and their composition.

Lemmas 5.1.3 and 5.1.4 establish a partial monoid structure for Chg and ⋅ • ⋅ under
extensional change equality, ≈. It is not trivial to squeeze more structure out of this
change representation, as we shall discuss next.

Loose Ends. The first thing that comes to mind is the definition of the inverse of a
change. Since changes are well-scoped, that is, vars pdel ≡ vars pins for any change p,
defining the inverse of a change p, denoted p−1, is trivial:

⋅−1 ∶∶ Chg 𝜅 fam at→ Chg 𝜅 fam at
p−1 = Chg pins pdel

Naturally, then, we would expect that p • p−1 ≈ 𝜖, but that is not the case. The
domain of 𝜖 is the entire set of trees, but the domain of p•p−1 is generally strictly smaller.
Consequently, we can easily find a tree t such that J𝜖K t ≡ Just t but Jp•p−1K ≡ Nothing.
Take, for example, the change shown in Figure 5.8.

The problemwith inverses above stems from p•p−1 being less general than the iden-
tity, since it has a smaller domain. In other words, p • p−1 works on a subset of the
domain of 𝜖, but it performs the same action as 𝜖 for the elements it is defined. It is
natural then to attempt to talk about changes modulo their domain. We could think of
stating p ≤ q whenever JpK ⊆ JqK . That is, when p and q are the same except that
the domain of q is larger. This ≤ is known as the usual extension order [93], and when
instantiated for our particular case, yields the definition below.

Definition 5.1.2 (Extension Order). Let p and q be two aptly typed changes; we say that
q is an extension of p, denoted p ≤ q, if and only if ∀ x ∈ dom p . JpK x ≡ JqK x. In
other words, p ≤ q when q coincides with p when restricted to p’s domain.

This gives us a preorder on changes and it is the case that p •p−1 ≤ 𝜖 and p−1 •p ≤ 𝜖.
Attempting to identify p•p−1 as somehow equivalent to 𝜖 using≤will not work, however.
We could think of defining a notion of approximate changes, denoted p ∼ q, by whether
p and q are comparable under≤. This would not yield an equivalence relation since∼ is
not transitive, as illustrated in Figure 5.9). Moreover, the extension order cannot be used
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Figure 5.9: Three changes such that p ∼ q (because p ≤ q) and q ∼ r (because r ≤ q).
Yet, p ≁ r since its not the case that r ≤ p or p ≤ r holds.
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Figure 5.10: Two changes that could be used to transform the same element x but are
not comparable under the extension order (≤).

to define the best change between two elements x and y. Take x to be Bin (Bin a b) a
and y to be Bin (Bin b a) a, two uncomparable changes are shown in Figure 5.10.

This short discussion does not mean that there is no suitable way to compare the
changes in Figure 5.10 or to define ∼ in such a way that the changes in Figure 5.9 be
considered equivalent. It does mean, however, that comparing the domain of changes is
a weak definition and a robust definition will probably be significantly more involved.

5.1.4 Computing Changes

Having seen how Chg has the basic properties we would expect, we move on to com-
puting them. In this section we define the generic counterpart to the chgTree function
(Section 5.1.1). Recall that the differencing algorithm starts by computing the sharing
map of its source s and destination d, which enable us to efficiently decide if a given tree
x is a subtree of s and d. Later, we use this sharing map and extract the deletion and
insertion contexts, according to some extraction mode, which ensure we will produce
well-scoped changes (Figure 5.4).

data ExtractionMode = NoNested ∣ ProperShare ∣ Patience
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The sharing map is central to the efficiency of the differencing algorithm, but it
marks subtrees for sharing regardless of underlying semantics, which can be a prob-
lem when the trees in question represent complex structures such as abstract syntax
trees. We must be careful not to overshare trees. Imagine a local variable declaration
int x = 0; inside an arbitrary function. This declaration should not be shared with
another syntactically equal declaration in another function. A careful analysis of what
can and cannot be sharedwould require domain-specific knowledge of the programming
language in question. Nevertheless, we can impose different restrictions that make it
unlikely that values will be shared across scope boundaries. A simple and effective such
measure is not sharing subtrees with height strictly less than one (or a configurable pa-
rameter). This keeps constants and most variable declarations from being shared, effec-
tively avoiding the issue.

5.1.4.1 Which Common Subtree, Generically

Similarly to the example from Section 5.1.1, the first thing wemust do is to annotate our
trees with hashes at every point. The Holes datatype from generics-simplistic
also supports annotations. Unlike the concrete example, however, we will also keep
the height of each tree to enable us to easily forbid sharing trees smaller than a certain
height. The PrepFix datatype, defined below, serves the same purpose as the simpler
TreeH, from our concrete example.

data PrepData a = PrepData {getDigest ∶∶ Digest , getHeight ∶∶ Int}
type PrepFix 𝜅 fam = SFixAnn 𝜅 fam PrepData

The decorate function can be written with the help of synthesized attributes (Sec-
tion 3.2.3.1). The homonym synthesize function from generics-simplistic serves
this very purpose. We omit the algebra passed to synthesize but invite the interested
reader to check Data.HDiff.Diff.Preprocess in the source (Appendix A).

decorate ∶∶ (All Digestible 𝜅) ⇒ SFix 𝜅 fam at→ PrepFix 𝜅 fam at
decorate = synthesize …

The algebra used by decorate, above, computes a hash at each constructor of the tree.
The hashes are computed from a unique identifier per constructor and a concatenation
of the hashes of the subtrees. The hash of the root in Figure 5.6, for example, is computed
with a call to hash (concat [“Main.Tree.Bin” , “310dac” , “4a32bd”]). This ensures that
hashes uniquely identify a subtree modulo hash collisions.

After preprocessing the input trees we traverse them and insert every hash we see
in a hash map from hashes to integers. These integers count how many times we have
seen a tree, indicating the arity of a subtree. Shared subtrees occur with arity of at least
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two: once in the deletion context and once in the insertion context. The underlying
datastructure is a Int64-indexed trie [19].

type Arity = Int
buildArityMap ∶∶ PrepFix a 𝜅 fam ix→ Trie Arity

A call to buildArityMap with the annotated tree shown in Figure 5.6, for example,
would yield the map fromList [(“0f42ab” , 1) , (“310dac” , 1) , (“0021ab” , 2) , … ].

After processing the aritymaps for both the source tree and destination tree, we con-
struct the sharing map, which consists in the intersection of the arity maps and a final
pass adding a unique identifier to every key. We also keep track of how many metavari-
ables were assigned, so we can always allocate fresh names without having to inspect
the whole map again. This is just a technical consequence of working with binders ex-
plicitly.

type MetavarAndArity = MAA {getMetavar ∶∶ Int , getArity ∶∶ Arity}
buildSharingMap ∶∶ PrepFix a 𝜅 fam ix→ PrepFix a 𝜅 fam ix

→ (Int , Trie MetavarAndArity)
buildSharingMap x y = T.mapAccum (𝜆i ar→ (i + 1 ,MAA i ar)) 0

$ T.zipWith (+) (buildArityMap x) (buildArityMap y)

The final wcs s d is straightforward: we preprocess the trees with their hash and
height; then compute their sharing map, which is used to lookup the common subtrees.
Yet, the whole point of preprocessing the trees was to avoid the unnecessary recomputa-
tion of their hashes. Consequently, we are better off carrying these preprocessed trees
everywhere through the computation of changes. The final wcs function will have its
type slightly adjusted and is defined below.

wcs ∶∶ (All Digestible 𝜅) ⇒ PrepFix 𝜅 fam at→ PrepFix 𝜅 fam at
→ PrepFix 𝜅 fam at→ Maybe Int

wcs s d = let m = buildSharingMap s d
in famp getMetavar ∘ flip T.lookup m ∘ getDigest ∘ getAnnot

Let f = wcs s d for some s and d. Computing f itself is linear and takes 𝒪(𝑛 + 𝑚)
time, where n andm are the number of constructors in s and d. A call to f x for some x,
however, is answered in 𝒪(1) due to the bounded depth of the trie.

We chose to use a cryptographic hash function [69] and ignore the remote possibility
of hash collisions. Although itwouldnot be hard to detect these collisionswhilst comput-
ing the arity map, doing so would incur a performance penalty. Checking for collisions
would require us to store the path to the tree together with its associated hash instead
of only storing the hash. Then, on every insertion we could check that the inserted tree
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matches with the tree already in the map. Had we opted for a non-cryptographic hash,
which are much faster to compute than cryptographic hash functions, we would have
had to employ the collision detection mechanism above. It is plausible that this would
cost more time than computing the cryptorgaphic hash at once. We did not test this,
however.

5.1.4.2 Context Extraction

After computing the set of common subtrees, we must decide which of those subtrees
should be shared. Shared subtrees are abstracted by a metavariable in every location
they would occur at in the deletion and insertion contexts.

Recall that we chose to never share subtrees with height smaller than a given pa-
rameter. Our choice is very pragmatic in the sense that we can preprocess the necessary
information and it effectively avoids most of the oversharing without involving domain
specific knowledge. The CanShare below is a synonym for a predicate over trees used
to decide whether we can share a given tree or not.

type CanShare 𝜅 fam = ∀ ix . PrepFix 𝜅 fam ix→ Bool

The extract function takes an ExtractionMode, a sharing map and a CanShare predi-
cate and two preprocessed fixpoints to extract contexts from. The reason we receive two
trees at the same time and produce two contexts is becausemodes likeNoNested perform
some cleanup that depends on global information.

extract ∶∶ ExtractionMode→ CanShare 𝜅 fam→ IsSharedMap
→ (PrepFix 𝜅 fam ∶∗∶ PrepFix 𝜅 fam) at→ Chg 𝜅 fam at

To some extent, we could compare context extraction to the translation of tree map-
pings into edit-scripts: our tree matching is encoded in wcs and instead of computing
an edit-scripts, we compute terms with metavariables. Classical algorithms are focused
in computing the least cost edit-script from a given tree mapping. In our case, the no-
tion of least cost hardly makes sense – besides not having defined a cost semantics to
our changes, we are interested in those that merge better which might not necessarily
be those that insert and delete the least amount of constructors. Consequently, there
is a lot of freedom in defining our context extraction techniques. We will look at three
particular examples next, but we discuss other possibilities later (Section 5.4).

Extracting with NoNested. Extracting contexts with the NoNested mode happens
in two passes. We first extract the contexts naively, then make a second pass removing
the variables that appear exclusively in the insertion. To keep the extraction algorithm
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linear it is important to not forget which common subtrees have been substituted on the
first pass. Hence, we create a context that contains metavariables and their associated
tree.

noNested1 ∶∶ CanShare 𝜅 fam→ Trie MetavarAndArity→ PrepFix 𝜅 fam at
→ Holes 𝜅 fam (Const Int ∶∗∶ PrepFix a 𝜅 fam) at

noNested1 h sm x@(PrimAnn xi) = Prim xi
noNested1 h sm x@(SFixAnn ann xi)

= if h x then maybe recurse (mkHole x) $ lookup (getDigest ann) sm
else recurse

where recurse = Roll (repMap (noNested1 h sm) xi)
mkHole x v = Hole (Const (getMetavar v) ∶∗∶ x)

The second pass maps over the holes in the output from the first pass and decides
whether to transform the Const Int into aMetavar 𝜅 fam or whether to forget this was
a potential shared tree and keep the tree instead. We will omit the implementation of
the second pass. It consists in a straightforward traversal of the output of noNested1. We
direct the interested reader to check Data.HDiff.Diff.Modes in the source code for more
details (Appendix A).

Extractingwith Patience. The Patience extraction can be done in a single pass. Un-
like noNested1 above, instead of simply looking a hash up in the sharing map, it will
further check that the given hash occurs with arity two – indicating the tree in question
occurs once in the source tree and once in the destination. This completely bypasses the
issue withNoNested producing insertion contexts with undefined variables and requires
no further processing. The reason for it is that the variables produced will appear with
the same arity as the trees they abstract, twice in this case: once in the deletion context
and once in the insertion context.

patience ∶∶ CanShare 𝜅 fam→ Trie MetavarAndArity→ PrepFix a 𝜅 fam at
→ Holes 𝜅 fam (Metavar 𝜅 fam) at

patience h sm x@(PrimAnn xi) = Prim xi
patience h sm x@(SFixAnn ann xi)

= if h x then maybe recurse (mkHole x) $ lookup (getDigest ann) sm
else recurse

where recurse = Roll (repMap (patience h sm) xi)
mkHole x v ∣ getArity v ≡ 2 = Hole (#fam

(getMetavar v))
∣ otherwise = sfixToHoles x

Extracting with ProperShares. The ProperShares method prefers sharing smaller
subtrees more times instead of bigger subtrees, which might shadow nested commonly
occurring subtrees (Figure 5.3).
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Given a source s and a destination d, we say that a tree x is a proper-share between
s and d whenever no subtree of x occurs in s and d with arity greater than that of x. In
other words, x is a proper-share if and only if all of its subtrees occur only as subtrees of
other occurrences of x. For the two trees below, u is a proper-share but Bin t u is not: t
occurs once outside Bin t u.

Bin

Bin

t u

k

Bin

Bin

t u

t

Extracting contexts with under the ProperShare mode consists in annotating the
source and destination trees with a boolean indicating whether or not they are a proper
share, then proceeding just like Patience, but instead of checking that the arity must be
two, we check that the tree is classified as a proper-share. It is important to use anno-
tated fixpoints to maintain performance, but the code is very similar to the previous two
methods and, hence, omitted.

The chg function. Finally, the generic chg function receives a source and destina-
tion trees, s and d, and computes a change that encodes the information necessary to
transform the source into the destination according to some extraction mode extMode.
In our prototype, the extraction mode comes from a command line option.

chg ∶∶ (All Digestible 𝜅) ⇒ SFix 𝜅 fam at→ SFix 𝜅 fam at→ Patch 𝜅 fam at
chg x y = let dx = decorate x

dy = decorate y
( , sh) = buildSharingMap opts dx dy
in extract extMode canShare (dx ∶∗∶ dy)

where
canShare t = 1 < treeHeight (getConst (getAnn t))

5.2 The Type of Patches

Up until now we have seen how changes consisting of a deletion and an insertion con-
text are a suitable representation for encoding transformations between trees. In fact,
changes are very similar to tree matchings (Section 2.1.2) but with fewer restrictions.
From a synchronization point of view, however, these changes are very difficult tomerge.
They do not explicitly encode enough information for that.

Synchronizing changes requires us to understandwhich constructors in the deletion
context are, in fact, just being copied over in the insertion context. Taking Figure 5.11,
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Figure 5.11: Example of disjoint changes. Each change is delimited by a dashed box.
The leftmost change modifies the left child and duplicates the right child without chang-
ing its content. The rightmost change operates solely on the right child.
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(b) Insertion as a patch

Figure 5.12: A change with redundant information on the left and its minimal repre-
sentation on the right, with an evident spine.

where one change operates exclusively on the right child of a binary tree whereas the
other alters the left child and duplicates the right child in-place. These changes are
clearly disjoint, since they modify the content of different subtrees of the source. Conse-
quently it should be possible to be automatically synchronize them. To recognize them
as disjoint changes, though, will requiremore information thanwhat is provided byChg.

Observing the definition of Chg reveals that the deletion context might deletemany
constructors that are being inserted, in the same place, by the insertion context. The
changes from Figure 5.11, for example, conceal the fact that the Bin at the root of the
source tree is, in fact, being copied in both changes. Following the stdiff nomencla-
ture, the Bin at the root of both changes in Figure 5.11 should be placed in the spine of
the patch. That is, it is copied over from source to destination but it leads to changes
further down the tree.

A patch, then, captures the idea of many individual changes operating over separate
parts of the source tree. It consists in a spine that leads to changes in its leaves, and is
defined by the type Patch below.

type Patch 𝜅 fam = Holes 𝜅 fam (Chg 𝜅 fam)
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(c) locally-scoped swap patch

Figure 5.13: A change that swaps some elements; naive anti-unification of the deletion
and insertion context breaking scoping; and finally the patch with minimal changes.

Figure 5.12 illustrates the difference between patches and changes. In Figure 5.12(a)
we see Bin (Leaf 42) being repeated in both contexts – whereas in Figure 5.12(b) it has
been placed in the spine and consequently, is clearly identified as a copy.

Patches are computed from changes by extracting common constructors from the
deletion and insertion contexts into the spine. In other words, we would like to push
the changes down towards the leaves of the tree. There are two different ways for doing
so, illustrated by Figure 5.13. On one hand we can consider the patch metavariables
to be globally-scoped, yielding structurally minimal changes, Figure 5.13(b). On the
other hand, we could strive for locally-scoped, where each change might still contain
repeated constructors as long as they are necessary to ensure the change is closed, as in
Figure 5.13(c). The first option, globally-scoped patches, is very easy to compute. All we
have to do is to compute the anti-unification of the insertion and deletion context.

globallyScopedPatch ∶∶ Chg ki codes at→ Patchpe ki codes at
globallyScopedPatch (Chg d i) = holesMap (uncurry′ Chg) (lgg d i)

Globally-scoped patches are easy to compute but contribute little information from
a synchronization point of view. To an extent, it makes merging even harder. Take
Figure 5.14, where a globally scoped patch is produced from a change. It is harder to un-
derstand that the (42∶) is being deleted by looking at the globally-scoped patch than by
looking at the change. This is because the first (∶) constructor is considered to be in the
spine by the naive anti-unification algorithm, which proceeds top-down. A bottom-up
approach is also unpractical, as we would have to decide which leaves to pair together
and it would suffer similar issues for data inserted on the tail of linearly structured data.
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(b) Top-down spine obscuring deletion at head.

Figure 5.14: Globally-scoped patches resulting in misalignment of metavariables due to
deletions in the head of linearly-structured data.

Locally-scoped patches imply that changes might still contain repeated constructors
in the root of their deletion and insertion contexts – hence they will not be structurally
minimal. Although more involved to compute, they give us a chance to address inser-
tions and deletions of constructors before we end up misaligning copies.

Independent of global or local scoping, ignoring the information about the spine
yields a forgetful functor from patches back into changes, named chgDistr. Its defini-
tion is straightforward thanks to the free monad structure of Holes, which gives us the
necessarymonadic multiplication. Wemust take care that chgDistrwill not capture vari-
ables, that is, all metavariablesmust have already been properly 𝛼-converted. We cannot
enforce this invariant directly in the chgDistr function for performance reasons, conse-
quently, we must manually ensure that all scopes contain disjoint sets of names and
therefore can be safely distributed whenever applicable. This is a usual difficulty when
handling objects with binders, in general.

holesMap ∶∶ (∀ x . 𝜑 x→ 𝜓 x) ⇒ Holes 𝜅 fam 𝜑 at→ Holes 𝜅 fam 𝜓 at
holesJoin ∶∶ Holes 𝜅 fam (Holes 𝜅 fam) at→ Holes 𝜅 fam at
chgDistr ∶∶ Patch ki codes at→ Chg ki codes at
chgDistr p = Chg (holesJoin (holesMap ⋅del p)) (holesJoin (holesMap ⋅ins p))

The application semantics of Patch is independent of the scope choices, and is easily
defined in terms of chgApply. First we compute a global change that corresponds to
the patch in question, then use chgApply. The apply function below works for locally
and globally scoped patches, as long as we care that the precondition for chgDistr is
maintained.

apply ∶∶ (All Eq 𝜅) ⇒ Patch 𝜅 fam at→ SFix 𝜅 fam at→ Maybe (SFix 𝜅 fam at)
apply p = chgApply (chgDistr p)
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(e) Not closed; #x appears in two separate changes.

Figure 5.15: Some non-minimal-closed and minimal-closed changes examples.

Overall, we find ourselves in a dilemma. On the one hand we have globally-scoped
patches, which have larger spines but can produce results that are difficult to understand
and synchronize, as in Figure 5.14. On the other hand, locally-scoped patches are more
involved to compute, as we will study next, in Section 5.2.1, but they forbid misalign-
ments and also enable us to process small changes independently of one another in the
tree. This is particularly important for being able to develop an industrial synchronizer
at some point, as it keeps conflicts small and isolated.

We propose that the actual solution will consist in using a combination of both local
and global scoping. First we will produce a locally-scoped patch, which forbids situa-
tions as in Figure 5.14. This patch will consist in an outer spine leading to closed locally-
scoped changes. This gives us an opportunity to identifying deletions and insertions
that could cause copies to be misaligned, essentially producing a globally-scoped align-
ment inside each of those changes. Alignments will be discussed in more detail shortly
(Section 5.2.3).

5.2.1 Computing Closures

Computing locally-scoped patches consists of first computing the largest possible spine,
like we did with globally-scoped patches, then enlarging the resulting changes until they
arewell-scoped and closed. Figure 5.13 illustrates this process. Computing the closure of
Figure 5.13(a) starts with Figure 5.13(b), then enlarging the changes so that they contain
the Bin constructor, which fixes their scope (resulting in Figure 5.13(c)).
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We say a change is closed when it has no free metavariables and, additionally, its
metavariables occur nowhere else. The changes produced by the chg function are closed,
for example, but they might not be as small as they could be. We say a change is mini-
mal when the root constructors in its deletion and insertion context are either different
or necessary to maintain scope. Figure 5.15 illustrates different combinations of closed
and minimal changes. The intuition behind minimal-closed changes is that two such
changes should not interfere with one another.

Producing locally-scoped minimal-closed changes can be difficult under arbitrary
renamings. Take Figure 5.15(e), one could argue that if the occurrences of #x in each
individual change are, in fact, different, then the changes are minimal-closed. To avoid
this, we always start from a large well-scoped change produced with chg. Consequently,
we know that every occurrence of #x refers to the same tree in the source of the patch.
This is another technicality of dealing with names explicitly and provides good reason
to enforce that names are always different, even when occurring in separate scopes.

In general, then, we can only know that a change is in fact closed if we know how
many times each variable is used globally. Say a variable #z is used n +m times in total
within a change c, and it has n andm occurrences in the deletion and insertion contexts
of c, respectively. Then#z does not occur anywhere else but within c, in other words, #z
is local to c. If all variables of c are local to c with respect to some global scope, we say c
is closed. Given a multiset of variables for the global scope, we can define isClosedChg
in Haskell as:

isClosedChg ∶∶ Map Int Arity→ Chg 𝜅 fam at→ Bool
isClosedChg global (Chg d i) = isClosed global (vars d) (vars i)
where isClosed global ds us = unionWith (+) ds us ‵isSubmapOf‵ global

The close function, shown in Figure 5.16, is responsible for pushing constructors
through the least general generalization until they representminimal-closed changes. It
calls an auxiliary version that receives the global scope and keeps track of the variables
it has seen so far. The worst case scenario happens when the we need all constructors of
the spine to close the change, in which case, close c = Hole c; yet, if we pass a non-well-
scoped change to close, it cannot produce a result and throws an error instead.

Efficiently computing closures requires us to keep track of the variables that have
been declared and used in a change – that is, we have seen occurrences in the deletion
and insertion context respectively. Recomputing thesemultisets would result in a slower
algorithm. The annWithVars function below computes the variables that occur in two
contexts and annotates a change with them:

data WithVars x at = WithVars {decls , uses ∶∶ Map Int Arity , body ∶∶ x at}
withVars ∶∶ (HolesMV 𝜅 fam ∶∗∶HolesMV 𝜅 fam) at→ WithVars (Chg 𝜅 fam) at
withVars (d ∶∗∶ i) = WithVars (vars d) (vars i) (Chg d i)
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close ∶∶ Chg 𝜅 fam at→ Holes 𝜅 fam (Chg 𝜅 fam) at
close c@(Chg d i) = case closeAux (chgVars c) (holesMap withVars (lgg d i)) of
InL → error “invariant failure: c was not well-scoped.”
InR b → holesMap body b

closeAux ∶∶ M.Map Int Arity→ Holes 𝜅 fam (WithVars (Chg 𝜅 fam)) at
→ Sum (WithVars (Chg 𝜅 fam)) (Holes 𝜅 fam (WithVars (Chg 𝜅 fam))) at

closeAux (Prim x) = InR (Prim x)
closeAux gl (Hole cv) = if isClosed gl cv then InR (Hole cv) else InL cv
closeAux gl (Roll x) =
let aux = repMap (closeAux gl) x
in case repMapM fromInR aux of
Just res → InR (Roll res)
Nothing→ let res = chgVarsDistr (Roll (repMap (either′ Hole id) aux))

in if isClosed gl res then InR (Hole res) else InL res
where
fromInR ∶∶ Sum f g x→ Maybe (g x)

Figure 5.16: Complete generic definition of close and closeAux.

The chgVarsDistr is the engine of the close function. It distributes a spine over a
change, similar to chgDistr, but here we care to maintain the explicit variable annota-
tions correctly.

chgVarsDistr ∶∶ Holes 𝜅 fam (WithVars (Chg 𝜅 fam)) at→ WithVars (Chg 𝜅 fam) at
chgVarsDistr rs = let us = map (exElim uses) (getHoles rs)

ds = map (exElim decls) (getHoles rs)
in WithVars (unionsWith (+) ds) (unionsWith (+) us)

(chgDistr (repMap body rs))

The closeAux function, Figure 5.16, receives a spine with leaves of typeWithVars …
and attempts to enlarge them as necessary. If it is not possible to close the current spine,
we return a InL … equivalent to pushing all the constructors of the spine down the
deletion and insertion contexts.

5.2.2 The diff Function

Equipped with the ability to produce changes and minimize them, we move on to defin-
ing the diff function. As usual, it receives source and destination trees, s and d, and
computes a patch that encodes the information necessary to transform the source into
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Figure 5.17: A Globally-scoped change and the result of applying it to
cpyPrimsOnSpine ∘ close, producing a patch with locally scoped changes and copies
in its spine.

the destination. The extraction of the contexts yields a Chg, which is finally translated
to a locally-scoped Patch by identifying the largest possible spine, with close.

diff ∶∶ (All Digestible 𝜅) ⇒ SFix 𝜅 fam at→ SFix 𝜅 fam at→ Patch 𝜅 fam at
diff x y = let dx = preprocess x

dy = preprocess y
(i , sh) = buildSharingMap opts dx dy
(del ∶∗∶ ins) = extract extMode canShare (dx ∶∗∶ dy)

in cpyPrimsOnSpine i (close (Chg del ins))
where canShare t = 1 < treeHeight (getConst (getAnn t))

The cpyPrimsOnSpine function will issue copies for the opaque values that appear
on the spine, as illustrated in Figure 5.17. There, the 42 does not get shared for its height
is smaller than 1 but since it occurs in the same location in the deletion and insertion
context it can be identified as a copy –which involves issuing a freshmetavariable, hence
the parameter i in the code above.

5.2.3 Aligning Changes

As we have seen in the previous sections, locally-scoped changes can avoid misalign-
ing changes (Figure 5.14), but they still do not help us in identifying the insertions and
deletions. As it will turn out, identifying these insertions and deletions is crucial for syn-
chronization. In this section we will define a datatype and an algorithm for represent-
ing and computing alignments, which make the backbone of synchronization. Untyped
synchronizers, such as harmony [35], must employ schemas to identify insertions and
deletions avoiding misalignments (Figure 5.14). In our case, the type information en-
ables us to identify insertions and deletions naturally by ensuring that they delete one
layer of a recursive type at a time, never altering the type of the value under scrutiny.
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Figure 5.18: The change from Figure 5.14, with with an association of which nodes
of the deletion and insertion contexts represent the same information, and an explicit
representation of that information.

Take Figure 5.18(a), illustrating the change that motivated locally-scoped patches
(Figure 5.14) in the first place. This time, however, arrows connect constructors that
represent the same information in each respective context. This makes it clear that (42∶)
has no counterpart in the insertion context and, consequently, corresponds to a deletion.
The Chg datatype by itself is insufficient to represent all this information. Therefore we
need a new datatype for alignments, Al, and a function that translates a Chg into an Al.
Computing and representing an alignment is, intuitively, the process of computing and
representing this association between subtrees of the deletion and insertion contexts.
The aligned version of Figure 5.18(a) is shown in Figure 5.18(b), where the Al border
marks scoping formetavariables. The constructors that are paired up in the deletion and
insertion are placed in a spine; those without a correspondent are flagged as deletions or
insertions depending on which context they belong. Finally, Cpy #□ is an abbreviation
for Chg #□ #□.

An aligned patch consists of a spine of copied constructors leading to a well-scoped
alignment. This alignment, in turn, consists of a sequence of insertions, deletions or
spines, which finally lead to aChg. TheseChg in the leaves of the alignment are globally-
scopedwith respect to the alignment they belong. We also add explicit information about
copies and permutations to aid the synchronization engine later. Figure 5.19 illustrates
a value of type Patch and its corresponding alignment, of type PatchAl defined below.
Note how the scope from each change in Figure 5.19(a) is preserved in Figure 5.19(b),
but the Bin on the left of the root can now be safely identified as a copy without losing
information about the scope of #x.

type PatchAl 𝜅 fam = Holes 𝜅 fam (Al 𝜅 fam (Chg 𝜅 fam))

Computing the alignment for a change c consists in identifying what information in
the deletion context correspond to the same information in the insertion context. The
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Figure 5.19: A patch p and its corresponding aligned version. The Al barrier marks the
beginning of an alignment and delimits scopes; copies and permutations are marked
explicitly and insertions and deletions indicate their continuation with□.

bits and pieces in the deletion context that have no correspondent in the insertion con-
text should be identified as deletions and vice-versa for the insertion context. In Fig-
ure 5.18(a), for example, the second (∶) in the deletion context represents the same in-
formation as the root (∶) in the insertion context.

We can recognize the deletion of (42∶) in Figure 5.18(b) structurally. All of its fields,
except one recursive field, contains no metavariables. The one subtree which does con-
tainmetavariables is denoted the focus of the deletion (resp. insertion). We denote trees
with no metavariables as rigid trees. A rigid tree has the guarantee that none of its sub-
trees is being copied, moved or modified. Consequently, rigid trees are being entirely
deleted from the source or inserted at the destination of the change. If a constructor in
the deletion (resp. insertion) context has all but one of its subtrees being rigid, it is only
natural to consider this constructor to be part of the deletion (resp. insertion).

Since our patches are locally scoped, computing an aligned patch is done bymapping
over the spine and aligning the individual changes. Aligning changes, in turn, consists
in identifying whether the constructor at the head of the deletion (resp. insertion) con-
text can be deleted (resp. inserted) then recursing on the focus of the deletion (resp.
insertion). When the root of the deletion context and the root of the insertion context
qualify for deletion and insertion, we check whether we can add them to a spine instead.

5.2.3.1 Generic Alignments

We will be representing a deletion or insertion of a recursive layer by identifying the
position where this modification must take place. Moreover, said position must be a
recursive field of the constructor – that is, the deletion or insertionmust not alter the type
that our patch operates over. This is easy to identify since we follow a typed approach,
where we always have access to type-level information.
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In the remainder of this section we discuss the datatypes necessary to represent an
aligned change, as illustrated in Figure 5.18(b), and how to compute said alignments
from a Chg 𝜅 fam at. The alignChg function, declared below, will receive a well-scoped
change and compute an alignment.

alignChg ∶∶ Chg 𝜅 fam at→ Al 𝜅 fam (Chg 𝜅 fam) at

Alignments encoded in theAldatatype are similar to its predecessorAl𝜇 fromstdiff
(Section 4.1.2). They record insertions, deletions and spines over a fixpoint. Insertions
and deletions are represented with Zippers [45]. A zipper over a datatype t is the type of
one-hole-contexts over t, where the hole indicates a focused position. Wewill use the zip-
pers provided directly by the generics-simplistic library (Section 3.2.4.1). These
zippers encode a single layer of a fixpoint at a time, for example, a zipper over the Bin
constructor is either Bin □ u or Bin u □, indicating the focus is in either the left or the
right subtree. It does not enable us specify a nested focus point, like in Bin (Bin □ t) u.

A value of type Zipper c g h at is then equivalent to a constructor of type at with
one of its recursive positions replaced by a value of type h at and the other positions at′
(recursive or not) carrying values of type g at′. The c above is a constraint that enables
us to inform GHC about some properties of type at and is mostly a technicality.

An alignment Al 𝜅 fam f at represents a sequence of insertions and deletions inter-
leaved with spines, copies and permutations which ultimately lead to unclassified modi-
fications, which are typed according to the f parameter. Next, we will go through the six
constructors of Al one by one. First we have deletions and insertions, which explicitly
mention a zipper and one recursive field to continue the alignment.

data Al 𝜅 fam f at where
Del ∶∶ Zipper (CompoundCnstr 𝜅 fam at) (SFix 𝜅 fam) (Al 𝜅 fam f) at→ Al 𝜅 fam f at
Ins ∶∶ Zipper (CompoundCnstr 𝜅 fam at) (SFix 𝜅 fam) (Al 𝜅 fam f) at→ Al 𝜅 fam f at

The CompountCnstr constraint above must be carried around to indicate we are
aligning a type that belongs to the mutually recursive family and therefore has a generic
representation – again, just a Haskell technicality.

Naturally, if no insertion or deletion can be performed but both insertion and dele-
tion contexts have the same constructor at their root, we want to recognize this construc-
tor as part of the spine of the alignment, and continue to align its fields pairwise.

Spn ∶∶ (CompoundCnstr 𝜅 fam x) ⇒ SRep (Al 𝜅 fam f) (Rep at) → Al 𝜅 fam f at

The Spn inside an alignment does not need to preserve metavariable scoping. Con-
sequently, it can be pushed closer to the leaves uncovering as many copies as possible.
When no Ins, Del or Spn can be used, we must resort to recording a unclassified modifi-
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cation, of type f at. Most of the times fwill be simply Chg 𝜅 fam, but we will be needing
to add some extra information in the leaves of an alignment later. Moreover, keeping
the f a parameter turns Al into a functor which enables us to map over it easily.

Mod ∶∶ f at→ Al 𝜅 fam f at

Take an alignment a = Mod (Chg #x #x). Does a represent a copy or is x contracted
or duplicated? Because metavariables are scoped globally within an alignment, we can
only distinguish between copies and duplications by traversing the entire alignment and
recording the arity of x. Yet, it is an important distinction to make. A copy synchronizes
with anything whereas a contraction needs to satisfy additional constraints. Therefore,
we will identify copies and permutations directly in the alignment to aid themerge func-
tion, later. Let c = Chg #x #y where both x and y occur twice in their global scope: once
in the deletion context and once in the insertion context. We say c is a copy when x ≡ y
and a permutation when x ≢ y. These are the last two constructors of Al.

Cpy ∶∶ Metavar 𝜅 fam at → Al 𝜅 fam f at
Prm ∶∶ Metavar 𝜅 fam at→ Metavar 𝜅 fam at→ Al 𝜅 fam f at

Equipped with a definition for alignments, we move on to defining alignChg. Given
a change c, the first step of alignChg c is checking whether the root of cdel (resp. cins) can
be deleted (resp. inserted). A deletion (resp. insertion) of an occurrence of a constructor
X can be performed when all fields of X at this occurrence are rigid trees with the excep-
tion of a single recursive field – recall rigid trees contains no metavariables. If we can
delete the root, we flag it as such and continue through the recursive non-rigid field. If
we cannot perform a deletion at the root of cdel nor an insertion at the root of cins but they
are constructed with the same constructor, we identify the constructor as being part of
the alignments’ spine. If cdel and cins do not have the same constructor at the root, nor
are copies or permutations, we finally fallback and flag an unclassified modification.

To check whether constructors can be deleted or inserted efficiently, we must anno-
tate rigidity information throughout our trees. The IsRigid datatype captures whether
a tree contains any metavariables or not and is placed in every node of a tree with the
annotRigidity function.

type IsRigid = Const Bool
annotRigidity ∶∶ Holes 𝜅 fam h x→ HolesAnn 𝜅 fam IsRigid h x

After annotating the trees with rigidity information, we extract the zippers that wit-
ness potential insertions or deletions. This is done by thehasRigidZipper function, which
first extracts all possible zippers from the root then checks whether one of them have all
of its fields marked rigid except for the focus of the zipper. If we find such a zipper, we
return it wrapped in a Just. When a rigid zipper exists it is unique by definition, hence
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Figure 5.20: Examples to hasRigidZipper and their return values where applicable.

there is no choice involved in detecting insertions and deletions, which keeps our algo-
rithms efficient and deterministic.

Figure 5.20 exemplifies two possible arguments to hasRigidZipper. The tree in Fig-
ure 5.20(a) has three possible zippers: focusing on either of its recursive positions. Nei-
ther of them, however, would have all its subtrees rigid except the focus point. Fig-
ure 5.20(b) on the other hand has one of its zippers (the one with focus on Bin #k #l,
Figure 5.20(c)) rigid, that is, none of the trees within the zipper has any metavariables.
We omit the full implementation of hasRigidZipper but invite the interested reader to
check Data.HDiff.Diff.Align in the source code (Appendix A).

Checking for deletions, then, can be easily done by first checking whether the root
has a rigid zipper. If so, we can flag the deletion. In the excerpt of alD below, should
d be the tree in Figure 5.20(b), focus would be Bin #k #l, which is the single non-rigid
recursive subtree of d.

alD d i = case hasRigidZipper d of
Just (Zipper zd focus) → Del zd (continueAligning focus i)

The complete alD is more involved. For one, we must check whether i also has a
rigid zipper. When both d and i have rigid zippers, we must check whether they are the
same constructor and, if so, mark it as part of the spine instead. The al function encap-
sulates the alD above and is shown in Figure 5.21. A call to al will attempt to extract
deletions, then insertions, then finally falling back to copies, permutations, modifica-
tions or recursively calling itself inside spines.

To compute an alignment, then, we start computing the multiset of variables used
throughout a patch, annotate the deletion and insertion context with IsRigid and pass
everything to the al function.

alignChg ∶∶ Chg 𝜅 fam at→ Al 𝜅 fam (Chg 𝜅 fam) at
alignChg c@(Chg d i) = al (chgVargs c) (annotRigidity d) (annotRigidity i)
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type Aligner 𝜅 fam = HolesAnn 𝜅 fam IsStiff (Metavar 𝜅 fam) t
→ HolesAnn 𝜅 fam IsStiff (Metavar 𝜅 fam) t
→ Al 𝜅 fam (Chg 𝜅 fam t)

al ∶∶ Map Int Arity→ Aligner 𝜅 fam
al vars d i = alD (alS vars (al vars)) d i
where

-- Try deleting many; try inserting one; decide whether to delete,
-- insert or spn in case both Del and Ins are possible. Fallback to
-- inserting many.
alD ∶∶ Aligner 𝜅 fam→ Aligner 𝜅 fam
alD f d i = case hasRigidZipper d of -- Is the root a potential deletion?

Nothing → alI f d i
-- If so, we must check whether we also have a potential insertion.
Just (Zipper zd rd) → case hasRigitZipper i of
Nothing → Del (Zipper zd (alD f rd i))
Just (Zipper zi ri) → case zipSZip zd zi of -- are zd and zi the same?

Just res→ Spn $ plug (zipperMap Mod res) (alD f rd ri)
Nothing→ Del (Zipper zd (Ins (Zipper zi (alD f rd ri))))

-- Try inserting many; fallback to parametrized action.
alI ∶∶ Aligner 𝜅 fam→ Aligner 𝜅 fam
alI f d i = case hasRigidZipper i of

Nothing → f d i
Just (Zipper zi ri) → Ins (Zipper zi (alI f d ri))

-- Try extracting spine and executing desired action
-- on the leaves; fallback to deleting; inserting then modifying
-- if no spine is possible.
alS ∶∶ Map Int Arity→ Aligner 𝜅 fam→ Aligned 𝜅 fam
alS vars f d@(Roll′ sd) i@(Roll′ si) =
case zipSRep sd si of
Nothing→ alMod vars d i
Just r → Spn (repMap (uncurry′ f) r)

syncSpine vars d i = alMod vars d i
-- Records a modification, copy or permutation.
alMod ∶∶ Map Int Arity→ Aligned 𝜅 fam
alMod vars (Hole′ vd) (Hole′ vi) =

-- are both vd and vi with arity 2?
∣ all (≡ Just 2 ∘ flip lookup vars) [metavarGet vd ,metavarGet vi]
= if vd ≡ vi then Cpy vd else Prm vd vi

∣ otherwise
= Mod (Chg (Hole vd) (Hole vi))

alMod d i = Mod (Chg d i)

Figure 5.21: Complete definition of al.
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Forgetting the information computed by alignChg is trivial, as shown in the disalign
function sketched below. It converts a Al back into a Chg in the expected way: it plugs
deletion and insertion zippers and distributes the constructors in the spine into both
deletion and insertion contexts and translates Cpy and Prm as expected.

disalign ∶∶ Al 𝜅 fam (Chg 𝜅 fam) at→ Chg 𝜅 fam at
disalign (Del (Zipper del rest)) =
let Chg d i = disalign rest in Chg (Roll (plug (cast del) d) i)

disalign …

Distributing an outer spine through an alignment is trivial. All we must do is place
all the constructors of the outer as constructors belonging to the alignment’s spine, Spn.

alDistr ∶∶ PatchAl 𝜅 fam at→ Al 𝜅 fam (Chg 𝜅 fam) at

Finally, computing aligned patches from locally-scoped patches is done by mapping
over the outer spine and aligning the changes individually, then wemake a pass over the
result and issue copies for opaque values that appear on the alignment’s inner spine.

align ∶∶ Patch 𝜅 fam at→ PatchAl 𝜅 fam at
align = fst ∘ align′

The auxiliary function align′ returns the successor of the last issued name to en-
sure we can easily produce fresh names later on, if need be. Once again, a technical-
ity of handling names explicitly. Note that align introduces information, namely, new
metavariables that represent copies over opaque values that appear on the alignment’s
spine. This means that mapping disalign to the result of alignwill not produce the same
result. Alignments and changes are not isomorphic.

align′ ∶∶ Patch 𝜅 fam at→ (PatchAl 𝜅 fam at , Int)
align′ p = flip runState maxv $ holesMapM (alRefineM cpyPrims ∘ alignChg vars) p
where vars = patchVars p

maxv = maybe 0 id (lookupMax vars)

The cpyPrims above issues aCpy i, for a fresh name iwhenever it sees amodification
with the form Chg (Prim x) (Prim y) with x ≡ y. The alRefineM f applies a function in
the leaves of the Al and has type:

alRefineM ∶∶ (Monad m) ⇒ (∀ x . f x→ m (Al 𝜅 fam g x))
→ Al 𝜅 fam f ty→ m (Al 𝜅 fam g ty)

This process of computing alignments showcases an important aspect of our well-
typed approach: the ability to access type-level information in order to compute zippers
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Figure 5.22: Conceptual pipeline of the design space for the diff function. Δ f x denotes
(f x , f x)

and understand deletions and insertions of a single layer in a homogeneous fashion –
the type that results from the insertion or deletion is the same type that is expected by
the insertion or deletion.

5.2.4 Summary

In Section 5.2 we have seen how Chg represents an unrestricted tree-matching, which
can later be translated into isolated, well-scoped, fragments connected through an outer
spine andmaking up a Patch. Finally, we have seen how to extract valuable information
from well-scoped fragments about which constructors have been deleted, inserted or
still belong to an inner spine, giving rise to alignments. This representation is a mix of
local and global alignments. The outer spine is important to isolate a large change into
smaller chunks, independent of one another.

The diff function produces a Patch instead of a PatchAl to keep it consistent with
our previously published work [76], but also because it is easier to manage calls to align
where they are directly necessary, since align produces fresh variables and this can re-
quire special attention to keep names from being shadowed.

In fact, the diff function could be any path in the diagram portrayed in Figure 5.22.
There is no right choice as this depends on the specific application in question. For our
particular case of pursuing a synchronization function, we require all the information
up to PatchAl.
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Figure 5.23: Span of patches, p (transforms 𝑂 into 𝐴) and q (transforms 𝑂 into 𝐵).
Both patches have a common element 𝑂 in their domain. The patch merge p q applies to
this common ancestor 𝑂 and can be thought of as the union of the changes of p and q.

5.3 Merging Aligned Patches

In this section we will be exploring a synchronization algorithm for aligned patches,
witnessed by the merge function, declared below, which receives two aligned patches p
and q thatmake a span – that is, have at least one common element in their domain. The
result ofmerge p q is a patch that might contain conflicts, denoted by PatchC, whenever
both p and q modify the same subtree in two distinct ways. If p and q do not make a
span merge p q returns Nothing. Figure 5.23 illustrates a span of patches p and q and
their merge which is supposed to be applied to their common ancestor producing a tree
which combines the modifications performed by p and q, when possible.

merge ∶∶ PatchAl 𝜅 fam at→ PatchAl 𝜅 fam al→ Maybe (PatchC 𝜅 fam at)

Recall our patches consist of a spinewhich leads to locally-scoped alignments, which
in turn have an inner spine that ultimately leads to changes. The distinction between
the outer spine and the spine inside the alignments is the scope. Consequently, we can
map a pure function over the outer spine without having to carry information about lo-
cal scopes to the next call. When manipulating the inner spine, however, we must keep
track of which variables have or have not been declared or used. Take the example in Fig-
ure 5.24, that merges patches p (Figure 5.24(a)) and q (Figure 5.24(b)) to produce a new
patch (Figure 5.24(c)). While synchronizing the left child of each root, we discover that
the tree located at (or, identified by) #x was Leaf 42. We must remember this informa-
tion sincewewill encounter#x again andmust ensure that itmatcheswith its previously
discovered value in order to perform the contraction. Whenwe finish synchronizing the
left child of the root, though, we can forget about#x sincewell-scopedness of alignments
guarantees #x will not appear elsewhere.

It helps to think about metavariables in a change as a unique identifier for a subtree
in the source. For example, if one change modifies a subtree x into a different subtree
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Figure 5.24: Example of a simple synchronization

x′, but some other change moves x, identified by #x, to a different location in the tree,
the result of synchronizing these should be the transport of x′ into the new location –
which is exactly where #x appears in the insertion context. The example in Figure 5.25
illustrates this very situation: the source tree identified by #x in the deletion context of
Figure 5.25(b) was changed, by Figure 5.25(a), from Leaf 42 into Leaf 84. Since p altered
the content of a subtree, but q altered its location, they are disjoint – they alter different
aspects of the common ancestor. Hence, the synchronization is possible and results in
Figure 5.25(c).
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Figure 5.25: Example of a simple synchronization.
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Given then two aligned patches, the merge p q function below will map over the
common prefix of the spines of p and q, captured by their least-general-generalization
and produce a patch that might contain conflicts inside. In the actual implementation
we receive two patches and align them inside merge, as this helps ensuring they will
have a disjoint set of names.

merge ∶∶ PatchAl 𝜅 fam at→ PatchAl 𝜅 fam at→ Maybe (PatchC 𝜅 fam at)
merge oa ob = holesMapM (uncurry′ go) (lgg oa ab)
where go ∶∶ Holes 𝜅 fam (Al 𝜅 fam) at→ Holes 𝜅 fam (Al 𝜅 fam) at

→ Maybe (Sum (Conflict 𝜅 fam) (Chg 𝜅 fam) at)
go ca cb = mergeAl (alDistr ca) (alDistr cb)

A conflict, defined below, contains a label identifying which branch of the merge al-
gorithm issued it and the two alignments that could not be synchronized. Conflicts are
issuedwhenever wewere not able to reconcile the alignments in question. This happens
either when we cannot detect that two edits to the same location are non-interfering or
when two edits to the same location in fact interfere with one another. Putting it differ-
ently, conflicts might contain false positives where edits could have been automatically
reconciled. The PatchC datatype encodes patches which might contain conflicts inside.

data Conflict 𝜅 fam at = Conflict String (Al 𝜅 fam at) (Al 𝜅 fam at)
type PatchC 𝜅 fam at = Holes 𝜅 fam (Sum (Conflict 𝜅 fam) (Chg 𝜅 fam)) at

Merging has a large design space. In what follows we will discuss our initial explo-
ration and prototype algorithm, which was driven by practical experiments (Chapter 6).

ThemergeAl function is responsible for synchronizing alignments and iswheremost
of the work happens. In broad strokes, it is similar to synchronizing Patchst’s (Sec-
tion 4.2): insertions are preserved as long as they do not happen simultaneously. Dele-
tions must be applied before continuing and copies are the identity of synchronization.
In the current setting, however, we also have permutations and arbitrary changes to
look at. The general conducting line of our synchronization algorithm is to first record
how each subtree wasmodified and then instantiate thesemodifications in a later phase.
Traversing the patches simultaneously whilst constructing substitutions would not suf-
fice since the order which metavariables appear in each context can be drastically differ-
ent. This would require us to start over every time we discovered new information on
the current traversal, yielding a very slow merging algorithm.

Let us look at an example, illustrated in Figure 5.26. We start identifying we are in
a situation where both diff o a and diff o b are spines, that is, they copy the same con-
structor at their root. Recursing pairwise through their children, we see a permutation
versus a copy. Since a copy is the identity element, we return the permutation. On the
right we see another spine versus an insertion, but since the insertion represents new
information, it must be preserved. Finally, inside the insertion we see another copy,
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↦

(c) Result of merge merge oa ob

Figure 5.26: Example merge of two simple patches.

which means that the spine should be preserved as is. The resulting patch can be seen
in Figure 5.26(c).

We keep track of the equivalences we discover in a state monad. The instantiation
of metavariables will be stored under inst and the list of tree equivalences will be stored
under eqs.

data MergeState 𝜅 fam = MergeState
{inst ∶∶ Map (Exists (Metavar 𝜅 fam)) (Exists (Chg 𝜅 fam))
, eqs ∶∶ Map (Exists (Metavar 𝜅 fam)) (Exists (HolesMV 𝜅 fam))
}

It is important to keep track of equivalences in eqs. Say, for example, we are to
merge two changes that were left as unclassified by our alignment algorithm. Natu-
rally, their deletion contexts must be unifiable, yielding a series of equivalences between
their metavariables but since we do not possess information about exactly how each
of those metavariables were transformed, we cannot register how they changed in inst.
Figure 5.27 provides a simple such example. When unifying the deletion contexts of Fig-
ure 5.27(a) and Figure 5.27(b), we learn that {#x ≡ Leaf 42 , #a ≡ #x; #b ≡ #y }, which
enable us to conclude both changes are compatible and perform the same actionmodulo
a contraction and can be merged, yielding Figure 5.27(c).

Conflicts and errors stemming from the arguments to mergeAl not forming a span
will be distinguished by theMergeErr datatype, below. We also define auxiliary functions
to raise each specific error in a computation inside the Exceptmonad.

data MergeErr = NotASpan ∣ Conf String
throwConf lbl = throwError (Conf lbl)
throwNotASpan = throwError NotASpan
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Figure 5.27: Merging arbitrary changes requires knowledge of equivalences between
metavariables and trees.

The mergeAl function is defined as a wrapper around mergeAlM, which is defined
in terms of theMergeMmonad to help carry around the necessary state and raises errors
through the Exceptmonad.

type MergeM 𝜅 fam = StateT (MergeState 𝜅 fam) (Except MergeErr)
mergeAl ∶∶ Aligned 𝜅 fam x→ Aligned 𝜅 fam x

→ Maybe (Sum (Conflict 𝜅 fam) (Chg 𝜅 fam) x)
mergeAl x y = case runExcept (evalStateT (mergeAlM p q) mrgStEmpty) of
Left NotASpan→ Nothing
Left (Conf err) → Just (InL (Conflict err p q))
Right r → Just (InR (disalign r))

Finally, the mergeAlM function maps over both alignments that we wish to merge
and collects all the constraints and observations. It then attempts to split these con-
straints and observations into two maps: (A) a deletion map that contains information
about what a subtree identified by a metavariable was; and (B) an insertion map that
identifies what said metavariable became. If it is possible to produce these two idempo-
tent substitutions, it then makes a second pass computing the final result.

mergeAlM ∶∶ Al 𝜅 fam at→ Al 𝜅 fam at→ MergeM 𝜅 fam (Al 𝜅 fam at)
mergeAlM p q = do phase1←mergePhase1 p q

info ← get
case splitDelInsMap info of
Left → throwConf “failed-contr”
Right di → alignedMapM (mergePhase2 di) phase1

First Phase. The first pass is computed by themergePhase1 function, which will pop-
ulate the state with instantiations and equivalences and place values of type Phase2 in-
place in the alignment. These values instruct the second phase on how to proceed on
that particular location. In between these phases of the merge algorithm we must pro-
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cess the information we gathered into a deletion and an insertion map, which enables
us to understand how subtrees were modified. This is done by the splitDelInsMap func-
tion and will be discussed in more detail later. First, we look into how the first pass
instantiates metavariables and registers equivalences.

ThemergePhase1 function receives two alignments and produces a third alignment
with instructions for the second phase. These instructions can be instantiating a change,
with P2Instantiate, which might include a context to ensure for some consistency predi-
cates. Or checking that two changes are 𝛼-equivalent after they have been instantiated.

data Phase2 𝜅 fam at where
P2Instantiate ∶∶ Chg 𝜅 fam at→ Maybe (HolesMV 𝜅 fam at) → Phase2 𝜅 fam at
P2TestEq ∶∶ Chg 𝜅 fam at→ Chg 𝜅 fam at→ Phase2 𝜅 fam at

Deciding which instruction should be performed depends on the structure of the
alignments under synchronization, and is done by the mergePhase1 function, whose
cases will be discussed one by one, next.

mergePhase1 ∶∶ Al 𝜅 fam x→ Al 𝜅 fam x
→ MergeM 𝜅 fam (Al′ 𝜅 fam (Phase2 𝜅 fam) x)

mergePhase1 p q = case (p , q) of
(Cpy , ) → return (Mod (P2Instantiate (disalign q)))
( , Cpy ) → return (Mod (P2Instantiate (disalign p)))

The first cases we have to handle are copies, shown above, which should be the iden-
tity of synchronization. That is, if p is a copy, all we need to do is modify the tree accord-
ing to q at the current location. Wemight need to refine q according to other constraints
we discovered in other parts of the alignment in question, so the final instruction is to
instantiate the Chg that comes from forgetting the alignment q. Recall disalign maps
alignments back into changes.

Next we look at permutations, which are almost copies in the sense that they do not
modify the content of the tree, but they modify the location. We distinguish the case
where both patches permute the same tree versus the case where one patch permutes
the tree but the other changes its contents.

(Prm x y , Prm w z) → Mod <$>mrgPrmPrm x y w z
(Prm x y , ) → Mod <$>mrgPrm x y (disalign q)
( , Prm x y) → Mod <$>mrgPrm x y (disalign p)

When merging two permutations, Prm #x #y against Prm #w #z, for example, we
know that#x and#wmust refer to the same subtree, hence we register their equivalence.
But since the two changes permuted the same tree, we can only synchronize them if they
were permuted to the same place. We can only assert that if we also get an equivalence
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between #y and #z. Consequently, we issue a P2TestEq and estabilish whether the two
permutations can be merged or not at the end of process.

mrgPrmPrm ∶∶ Metavar 𝜅 fam x→ Metavar 𝜅 fam x
→ Metavar 𝜅 fam x→ Metavar 𝜅 fam x
→ MergeM 𝜅 fam (Phase2 𝜅 fam x)

mrgPrmPrm x y w z = onEqvs (𝜆eqs→ substInsert eqs x (Hole w))
>> return (P2TestEq (Chg (Hole x) (Hole y)) (Chg (Hole w) (Hole z)))

If we are merging one permutation with something other than a permutation, how-
ever, we know one change modified the location of a tree, whereas another potentially
modified its contents. Allwemust do is record that the tree identified by#xwasmodified
according to c. After we have made one entire pass over the alignments being merged,
we must instantiate the permutation with the information we discovered – the #x oc-
currence in the deletion context of the permutation will be cdel, potentially simplified or
refined. The #y appearing in the insertion context of the permutation will be instanti-
ated with whatever we come to discover about it later. We know theremust be a single
occurrence of#y in a deletion context because the alignment flagged it as a permutation.

mrgPrm ∶∶ Metavar 𝜅 fam x→ Metavar 𝜅 fam x→ Chg 𝜅 fam x
→ MergeM 𝜅 fam (Phase2 𝜅 fam x)

mrgPrm x y c = addToInst “prm-chg” x c
>> return (P2Instantiate (Chg (Hole x) (Hole y)) Nothing)

The addToInst function inserts the (x , c) entry in inst if x is not yet a member. It
raises a conflict, in general, if x is already in inst with a value that is different from c 1.
In the call to addToInst in mrgPrm, above, it never raises a “prm-chg” conflict. This is
because #x and #y are classified as a permutation – each variable occurs exactly once
in the deletion and once in the insertion contexts. Therefore, it is impossible that x was
already a member of inst.

Next, we look at insertions. Interstinos must be preserved as long as they do not
attempt to insert different information in the same location, otherwise we would not be
able to decide which insertion should happen first.

(Ins (Zipper z p′) , Ins (Zipper z′ q′))
∣ z ≡ z′ → Ins ∘ Zipper z <$>mergePhase1 p′ q′
∣ otherwise → throwConf “ins-ins”

(Ins (Zipper z p′) , ) → Ins ∘ Zipper z <$>mrgPhase1 p′ q
( , Ins (Zipper z q′)) → Ins ∘ Zipper z <$>mrgPhase1 p q′

1Instead of forbidding values different than c, we could think to check whether the two different values can
be merged. This would incur other difficulties and is left as future work.
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(a) Call to tryDel succeeds. The Bin at the root can be deleted as it only overlaps with copies. tryDel re-
turns the focus of the deletion and the part of the alignment a that overlaps with it.
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↦

(b) Call to tryDel fails. Although the Bin at the root could be deleted, the alignment a is
changing the 42 present in the leaf. This is a conflict.

Figure 5.28: Two example calls to tryDel.

Deletions must be preserved and executed. That is, if one patch deletes a constructor
but the other modifies the fields of the constructor, we must first ensure that none of
the deleted fields have been modified but the deletion should be preserved in the merge.
The tryDel function attempts to execute the deletion of a zipper over an alignment, and,
if successful, returns the pair of alignments we should continue to merge. It essentially
overlaps the deletion zipper with a and observes whether a performs no modifications
anywhere except on the focus of the zipper. When its not possible to execute the deletion
we can continue. Figure 5.28 illustrates some example calls to tryDel, whose complete
generic definition is shown in Figure 5.29.

(Del zp@(Zipper z ) , ) → Del ∘ Zipper z <$> (tryDel zp q >>= uncurry mrgPhase1)
( , Del zq@(Zipper z )) → Del ∘ Zipper z <$> (tryDel zq p >>= uncurry mrgPhase1)

Note that sincemerge is supposed to be symmetric, we can freely swap the order of
arguments. Althoughwe never got to proving this formally, our QuickCheck tests were
encouraging that this is the case.



124 5.3 MERGING ALIGNED PATCHES

tryDel ∶∶ Zipper (CompoundCnstr 𝜅 fam x) (SFix 𝜅 fam) (Al 𝜅 fam (Chg 𝜅 fam)) x
→ Al 𝜅 fam (Chg 𝜅 fam) x
→ MergeM 𝜅 fam (Al 𝜅 fam (Chg 𝜅 fam) x , Al 𝜅 fam (Chg 𝜅 fam) x)

tryDel (Zipper z h) (Del (Zipper z′ h′))
∣ z ≡ z′ = return (h , h′)
∣ otherwise = throwConf “del-del”

tryDel (Zipper z h) (Spn rep) = case zipperRepZip z rep of
Nothing→ throwNotASpan
Just r → case partition (exElim isInR1) (repLeavesList r) of

([Exists (InL Refl ∶∗∶ x)] , xs)
∣ all isCpyL1 xs→ return (h , x)
∣ otherwise → throwConf “del-spn”

→ error “unreachable; zipRepZip invariant”
tryDel (Zipper ) = throwConf “del-mod”

Figure 5.29: Complete generic definition of the tryDel function.

Next we have spines versus modifications. Intuitively, we want to match the dele-
tion context of the change against the spine and, when successful, return the result of
instantiating the insertion context of the change.

(Mod p′ , Spn q′) → Mod <$>mrgChgSpn p′ q′
(Spn p′ ,Mod q′) → Mod <$>mrgChgSpn q′ p′

The mrgChgSpn function, below, matches the deletion context of the Chg against
the spine and and returns a P2Instantiate instruction. The instantiation function instM,
illustrated in Figure 5.30 and defined in Figure 5.31, receives a deletion context and an
alignment and attempts to assign the variables in the deletion context to changes inside
the alignment. This is only possible, though, when the modifications in the spine occur
further from the root than the variables in the deletion context. Otherwise, we have a
conflict where some constructors flagged for deletion are also marked as modifications.

mrgChgSpn ∶∶ (CompoundCnstr 𝜅 fam x) ⇒ Chg 𝜅 fam x→ SRep (Al 𝜅 fam) (Rep x)
→ MergeM 𝜅 fam (Phase2 𝜅 fam x)

mrgChgSpn p@(Chg dp ) spn = do
instM dp (Spn spn)
return (P2Instantiate p (Just (disalign (Spn spn))ins))

The Just in the return value above indicates that we must check that we will not
introduce extra duplications. Figure 5.32 illustrates a case where failing to perform this
check would result in an erroneous duplication of the value 2. Matching the deletion
context of chg = Chg #c (#a∶#c) against the spine spn = Spn (Cpy #o∶Chg #z (#x∶#z))
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Cpy #l instM d al ≡ throwConf “inst-mod”
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(b) Call to instM returns a conflict. The deletion context, d, wants to match against the value 42 but the align-
ment modifies it.

Figure 5.30: Two example calls to instM.

instM ∶∶ (All Eq 𝜅) ⇒ HolesMV 𝜅 fam at→ Al 𝜅 fam at→ MergeM 𝜅 fam ()
instM (Cpy ) = return ()
instM (Hole v) a = addToInst “inst-contr” v (disalign a)
instM (Mod ) = throwConf “inst-mod”
instM (Prm ) = throwConf “inst-perm”
-- Del ctx and spine must form a span; cannot reference different constructors or primitives.
instM x@(Prim ) d = when (x ≢ (disalign d)del) throwNotASpan
instM (Roll r) (Spn s) = case zipSRep r s of
Nothing→ throwNotASpan
Just res → void (repMapM (𝜆x→ uncurry′ instM x >> return x) res)

instM (Roll ) (Ins ) = throwConf “inst-ins”
instM (Roll ) (Del ) = throwConf “inst-del”

Figure 5.31: Implementation of instM, which receives a deletion context and an align-
ment and attempts to instantiate the variables in the deletion context with changes in the
alignment.
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Figure 5.32: Example of two conflicting patches that move the same subtree into two
different locations. The patches here are operating over pairs of lists.

yields #c equal to spn, which correctly identifies that the subtree at #c was modified
according to spn. The observation, however, is that the insertion context of chgmentions
#a, which is a subtree that comes from outside the deletion context of chg. If we do not
perform any further check and proceed naively, we would end up substituting #c for
(disalign spn)del and for (disalign spn)ins in chgdel and chgins, respectively, which would
result in:

(∶)

#𝑜 #𝑧

(∶)

#𝑎 (∶)

#𝑜 (∶)

#𝑥 #𝑧

↦

Since we know #x ≡ #a, which was registered when merging the left hand side of
(,), in Figures 5.32(a) and 5.32(b), it becomes clear that #a was erroneously duplicated.
Our implementation will reject this by checking that the set of subtrees that appear in
the result of instantiating chg is disjoint from the set of subtrees moved by spn.
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Merging two spines is simple. We know they must reference the same constructor
since the arguments tomerge form a span. All that we have to do is recurse on the paired
fields of the spines, point-wise:

(Spn p′ , Spn q′) → case zipSRep p′ q′ of
Nothing→ throwNotASpan
Just r→ Spn <$> repMapM (uncurry′ mrgPhase1) r

Lastly, when the alignments in question are arbitrarymodifications, wemust try our
best to reconcile these. We handle duplications differently from arbitrary modifications,
which are easier to handle.

(Mod p′ ,Mod q′) → Mod <$>mrgChgChg p′ q′

A duplication or contraction is of the formChg #x #y, where#x or#y occurs at least
three times in the alignment at question. Three occurrences might seem arbitrary, but
a metavariable must occur at least twice, and, when it occurs only twice the alignment
algorithm would have marked it as a copy or a permutation. Merging duplications is
straightforward. When either one of p′ or q′ above are a duplication but the other is a
change, we record how the tree was changed and move on.

mrgChgDup ∶∶ Chg 𝜅 fam x→ Chg 𝜅 fam x→ MergeM 𝜅 fam (Phase2 𝜅 fam x)
mrgChgDup dup@(Chg (Hole v) ) q′ = do
addToInst “chg-dup” v q′
return (P2Instantiate dup Nothing)

Finally, if p and q are not duplications, nor any of the cases previously discussed,
then the best we can do is register equivalence of their domains – recall both patches
being merged must form a span – and synchronize successfully when both changes are
equal.

mrgChgChg ∶∶ Chg 𝜅 fam x→ Chg 𝜅 fam x→ MergeM 𝜅 fam (Phase2 𝜅 fam x)
mrgChgChg p′ q′ ∣ isDup p′ = mrgChgDup p′ q′

∣ isDup q′ = mrgChgDup q′ p′
∣ otherwise = case unify p′del q′del of
Left → throwNotASpan
Right r→ onEqvs (M.∪ r) >> return (P2TestEq p′ q′)

Once the first pass is done, we have collected information about how each subtree
has been changed and potential subtree equivalences we might have discovered. The
next step is to synthesize this information into two maps: a deletion map that informs
us what a subtreewas and a insertionmap that informs us what a subtree became, so we
can perform the P2Instante and P2TestEq instructions.
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Second Phase. The second phase starts with splitting inst and eqvs, which requires
some attention. For example, imagine there exists an entry in inst that assigns #x to
Chg (Hole #y) (42 ∶ (Hole #y)), this tells us that the tree identified by #x is the same as
the tree identified by #y, and it became 42 ∶ #y. Now suppose that #x was duplicated
somewhere else, and we come across an equivalence that says #y ≡ #x. We cannot
simply insert this equivalence into inst because the merge algorithm made the decision
to remove all occurrences of #x, not of #y, even though they identify the same subtree.
This is important to ensure we produce patches that can be applied.

The splitDelInsMaps function is responsible for synthesizing the information gath-
ered in the first pass of the synchronization algorithm. First we split inst into the deletion
and insertion components of each of its points. Next, we partition the equivalences into
rigid equivalences, of the form (#v , t) where t has no holes, and non-rigid equivalences.
The rigid equivalences are added to both deletion and insertion maps, but the non-rigid
ones, (#v , t), are only added when there is no information about the #v in the map and,
if t ≡ #u, we also check that there is no information about #u in the map. Lastly, after
these have been added to the map, we callminimize to produce an idempotent substitu-
tion we can use for phase two. If an occurs-check error is raised, this is forwarded as a
conflict.

type Subst2 𝜅 fam = (Subst 𝜅 fam (Metavar 𝜅 fam) , Subst 𝜅 fam (Metavar 𝜅 fam))
splitDelInsMaps ∶∶ MergeState 𝜅 fam→ Either [Exists (Metavar 𝜅 fam)] (Subst2 𝜅 fam)
splitDelInsMaps (MergeState iot eqvs) = do
let e′ = splitEqvs eqvs
d← addEqvsAndSimpl (map (exMap ⋅del) inst) e′
i← addEqvsAndSimpl (map (exMap ⋅ins) inst) e′
return (d , i)

After computing the insertion and deletion maps, which inform us how each iden-
tified subtree was modified, we start a second pass over the result of the first pass and
execute the necessary instructions.

phase2 ∶∶ Subst2 𝜅 fam→ Phase2 𝜅 fam at→ MergeM 𝜅 fam (Chg 𝜅 fam at)
phase2 di (P2TestEq ca cb) = isEqChg di ca cb
phase2 di (P2Instantiate chg Nothing) = return (refineChg di chg)
phase2 di (P2Instantiate chg (Just i)) = do
es← gets eqs
case getCommonVars (substApply es chgins) (substApply es i) of
[ ] → return (refineChg di chg)
xs → throwConf (“mov-mov ” ++ show xs)

The getCommonVars computes the intersection of the variables in twoHoles, which
is used to forbid subtrees to be moved in two different ways.
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Refining changes according to the inferred information is straightforward, all we
must do is apply the deletion map to the deletion context and the insertion map to the
insertion context.

refineChg ∶∶ Subst2 𝜅 fam→ Chg 𝜅 fam at→ Chg 𝜅 fam at
refineChg (d , i) (Chg del ins) = Chg (substApply d del) (substApply i ins)

When deciding whether two changes are equal, its also important to refine them
first, since they might be 𝛼-equivalent.

isEqChg ∶∶ Subst2 𝜅 fam→ Chg 𝜅 fam at→ Chg 𝜅 fam at→ Maybe (Chg 𝜅 fam at)
isEqChg di ca cb = let ca′ = refineChg di ca

cb′ = refineChg di cb
in if ca′ ≡ cb′ then Just ca′ else Nothing

The merging algorithm presented in this section is involved. It must deal with a
number of corner cases and use advanced techniques to do so generically. Most of the
difficulties come from having to deal with arbitrary duplications and contractions. If we
instead chose to use only linear patches, that is, patches where each metavariable must
be declared and used exactly once, the merge algorithm could be simplified.

5.4 Discussion and Further Work

With hdiff we have seen that a complete detachment from edit-scripts enables us to
define a computationally efficient differencing algorithm and how the notion of change
coupled with a simple notion of composition gives a sensible algebraic structure. The
patch datatype in hdiff is more expressive than edit-script based approaches, as it en-
ables us to write transformations involving arbitrary permutations and duplications. As
a consequence, we have a more involved merge algorithm. For one, we cannot easily
generalize our three-way merge to 𝑛-way merge. More importantly, though, there are
subtleties in the algorithm that arose purely from practical necessities. Our posterior
empirical evaluation (Chapter 6) does indicate that the best success ratio comes from
merging linear patches – where metavariables occur exactly twice, obtained with the
Patience extraction mode. This does suggest that the soft-spot in the design space might
well be allowing arbitrary permutations, enabling a fast differencing algorithm, but for-
bidding arbitrary duplications and contractions, which could enable a simpler merging
algorithm. Besides the merging algorithm, we will discuss a number of other important
aspects that were left as future work and would need to be addressed to bring hdiff
from a prototype to a production tool.
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Refining Matching and Sharing Control

The matching engine underlying hdiff uses hashes indiscriminately, all information
under a subtree being used to compute its hash, which can be undesirable. Imagine a
parser that annotates its resulting AST with source-location tokens. This means that
we would not be able to recognize permutations of statements, for example, since both
occurrences would have different source-location tokens and, consequently, different
hashes.

This issue goes hand in handwith decidingwhich parts of the tree can be shared and
up until which point. For example, we probably never want to share local statements
outside their scope. Recall we avoided this issue by restricting whether a subtree could
be shared or not based on its height. This was a pragmatic design choice that enabled us
to make progress but it is a work-around at best.

Salting the hash function of preprocess is not an option for working around the issue
of sharing control. If the information driving the salt function changes, none of the sub-
trees under there can be shared again. To illustrate this, suppose we push scope names
into a stack with a function intrScope ∶∶ SFix 𝜅 fam at → Maybe String, which would
be supplied by the user. It returns a Just whenever the datatype in question introduces
a scope. The const Nothing function works as a default value, meaning that the mutu-
ally recursive family in question has no scope-dependent naming. A more interesting
intrScope, for some imaginary mutually recursive family, is given below.

intrScope m@(Module … ) = Just (moduleName m)
intrScope f@(FunctionDecl … ) = Just (functionName f)
intrScope = Nothing

With intrScope as above, we could instruct the preprocess to push module names
and function names every time it traverses through one such element of the family. For
example, preprocessing the pseudo-code below would mean that the hash for a inside
fibwould be computed with [“m” ,“fib”] as a salt; but a inside fatwould be computed
with [“m” , “fat”] as a salt, yielding a different hash.

module m
fib n = let a = 0; b = 1; ...
fat n = let a = 0; ...

This will work out well for many cases, but as soon as a change altered any informa-
tion that was being used as a salt, nothing could be shared anymore. For example, if we
rename module m to module x, the source and destinationwould contain no common
hashes, since we would have used [“m”] to salt the hashes for the source tree, but [“x”]
for the destination, yielding different hashes.
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This problem is twofold, however. Besides identifying the algorithmic means to en-
sure hdiff could be scope-aware and respect said scopes, we must also engineer an
interface to enable the user to easily define said scopes. We could think of design that
made use of a custom version of the generics-simplistic library, with an added
alias for the identity functor that could receive special treatment, for example:

newtype Scoped f = Scoped {unScoped ∶∶ f}
data Decl = ImportDecl …

∣ FunDecl String [ParmDecl] (Scoped Body)
…

This would mean that when inspecting and pattern matching on SRep throughout
our algorithms, we could treat scoped types differently.

We reiterate that if there is a solution to this problem, it certainly will not use a
modification of the matching mechanism: if we use scope names, renamings will cause
problems; if we use the order in which scopes have been seen (De Bruijn-like), permu-
tations will cause problems. Controlling on the height of the trees and minimizing this
issue was the best option to move forward in an early stage. Unfortunately, there was
no time to explore how scope graphs [81] could help us here, but it is certainly a good
place to start looking. It might be possible to use scope graphs to write a more intricate
close function, that will properly break sharing where necessary, for example.

Extraction Methods, Best Patch and Edit-Scripts

We have presented three extraction methods, which we called NoNested, ProperShare
and Patience. Computing the diff between two trees using different extraction methods
can produce different patches. Certainly there can be more extraction methods. One
such example that would be interesting to implement is a refinement of ProperShare,
aimed at breaking the sharing introduced by it. The idea was to list the metavariables
that appear in the deletion and insertion context and compute the LCS between these
lists. The location of copies enable us to break sharing and introduce newmetavariables.
For example, take the change below.

Bin

Bin

#𝑥 #𝑥

Bin

#𝑧 #𝑥

Bin

#𝑥 Bin

#𝑧 #𝑥

↦

The list ofmetavariables in the deletion context is [#x ,#x ,#z ,#x ], but in the insertion
context we have [#x , #z , #x ]. Computing the longest common subsequence between
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these lists yields [Del x , Cpy , Cpy , Cpy]. The first Del suggests a contraction is really
necessary, but the last copy shows that we could break the sharing by renaming #x to
#k, for example. This would essentially transform the change above into:

Bin

Bin

#𝑥 #𝑥

Bin

#𝑧 #𝑘

Bin

#𝑥 Bin

#𝑧 #𝑘

↦

The point is that the copying of #z can act as a synchronization point to introduce
more variables, forget some sharing constraints, and ultimately enlarge the domain of
our patches.

Forgetting about sharing is just one example of a different context extraction mech-
anism and, without a formal notion about when a patch is better than another, it is im-
possible to make a decision about which context extraction should be used. Our exper-
imental results suggest that Patience yields patches that merge successfully more often,
but this is far from providing a metric on patches, like the usual notion of cost does for
edit-scripts.

Another interesting aspect that could have been looked at is the relation between our
Patch datatype and traditional edit-scripts. The idea of breaking sharing above can be
used to translate our patches to an edit-script. Some early experiments did show that we
could use this method to compute approximations of the least-cost edit-script in linear
time. Given that the minimum cost edit-script takes nearly quadratic time [11], it might
be worth looking into how good an approximationwemight be able to compute in linear
time.

Formalizations and Generalizations

Formalizing and proving properties about our diff andmerge functions was also a prior-
ity. As it turns out, the extensional nature of Patchmakes for a difficult Agda formaliza-
tion, which is the reason this was left as future work.

The value of a formalization goes beyond enabling us to prove important proper-
ties. It also provides a laboratory for generalizing aspects of the algorithms. Two of
those immediately jump to mind: generalizing the merge function to merge 𝑛 patches
and generalizing alignments insertions and deletions zippers to be of arbitrary depth,
instead of a single layer. Finally, a formalization also provides important value in better
understanding the merge algorithm.
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Experiments
Throughout this thesis we have presented two approaches to structural differencing. In
Chapter 4 we saw stdiff, which although unpractical, provided us with important in-
sights into the representation of patches. These insights and experience led us to develop
hdiff, in Chapter 5, which improved upon the previous approach with a more efficient
diff function at the expense of the simplicity of the merge algorithm: themerge function
from hdiff is much more involved than that of stdiff.

In this chapter we evaluate our algorithms on real-world conflicts extracted from
GitHub and analyze the results. We are interested in performance measurements and
synchronization success rates, which are central factors to the applicability of structural
differencing in the context of software version control.

To conduct the aforementioned evaluation we have extracted a total of 12 552 usable
datapoints fromGitHub. They have been obtained from large public repositories storing
code written in Java, JavaScript, Python, Lua and Clojure. The choice of programming
languages was motivated by the availability of parsers, with the exception of Clojure,
where we borrowed a parser from a MSc thesis [36]. More detailed information about
the data collection is given in Section 6.1.

The evaluation of stdiff has fewer datapoints than hdiff for the sole reason
that stdiff requires the generics-mrsop library, which triggers a memory leak in
GHC1 when used with larger abstract syntax trees. Consequently, we could only evalu-
ate stdiff over the Clojure and Lua subset of our dataset.

1https://gitlab.haskell.org/ghc/ghc/issues/17223 and https://gitlab.haskell.
org/ghc/ghc/issues/14987

https://gitlab.haskell.org/ghc/ghc/issues/17223
https://gitlab.haskell.org/ghc/ghc/issues/14987
https://gitlab.haskell.org/ghc/ghc/issues/14987
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6.1 Data Collection

Collecting files from GitHub can be done with the help of some bash scripting. The
overall idea is to extract themerge conflicts from a given repository by listing all commits
𝑐withmore than two parents, recreating the repository at the state immediately previous
to 𝑐 and attempting to call git merge at that state.

Our script improves upon the script written by Garuffi [36] bymaking sure to collect
the file that a human committed as the resolution of the conflict, denoted M.lang. To
collect conflicts from a repository, then, all we have to do is run the following commands
at its root.

• List each commit 𝑐 with at least two parents with git rev-list --merges.

• For each commit 𝑐 as above, let its parents be 𝑝0 and 𝑝𝑠; checkout the repository
at𝑝0 and attempt to git merge --no-commit ps. The --no-commit switch
is important since it gives us a chance to inspect the result of the merge.

• Next we parse the output of git ls-files --unmerged, which provides us
with the three object-ids for each file that could not be automatically merged: one
identifier for the common ancestor and one identifier for each of the two diverging
replicas.

• Then we use git cat-file to get the files corresponding to each of the object-
ids gathered on the previous step. This yields three files, O.lang, A.lang and
B.lang. Lastly, we use git show to save the file M.lang that was committed
by a human resolving the conflict.

After running the steps above for a number of repositories, we end up with a list
of folders containing a merge conflict that was solved manually. Each of these folders
contain a span 𝐴 ← 𝑂 → 𝐵 and a file 𝑀 which is the human-produced result of syn-
chronizing 𝐴 and 𝐵. We refer the reader to the full code for more details (Appendix A).
Overall, we acquired 12 552 usable conflicts – that is, we were able to parse the four files
with the parsers available to us – and 2 771 conflicts where at least one file yielded a parse
error. Table 6.1 provides the distribution of datapoints per programming language and
displays the number of conflicts that yielded a parse error. These parse errors are an in-
evitable consequence of using off-the-shelf parsers on an existing dataset. The parseable
conflicts have been compiled into a publicly available dataset [72].

6.2 Performance

To measure the performance of the diff functions in both approaches we computed four
patches per datapoint, namely: diff O A, diff O B, diff O M and diff A B.
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Language Repositories Parseable Conflicts Non-parseable Conflicts

Clojure 31 1 213 16
Java 19 2 901 851
JavaScript 28 3 392 965
Lua 27 748 91
Python 27 4 298 848

Totals 132 12 552 2 771

Table 6.1: Distribution of datapoints within our dataset [72]. The repositories were cho-
sen manually by searching each respective language in GitHub. Our criteria for selecting
repositories to mine was based on number of forks and commits, in an attempt to maxi-
mize pull requests.
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Figure 6.1: Performance measurements of stdiff and hdiff differencing functions.
The vertical axis represents seconds and the horizontal axis has the sum of the number of
constructors in the source and destination trees.
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Whilst computing patches we limited the memory usage to 8GB and runtime to 30s.
If a call to diff used more than the available temporal and spatial resources it was auto-
matically killed. We ran both stdiff and hdiff on the same machine, yet, we stress
that the absolute values are of little interest. The real take away from this experiment
is the empirical validation of the complexity class of each algorithm. The results are
shown in Figure 6.1 and plot the measured runtime against the sum of the number of
constructors in the source and destination trees.

Figure 6.1(a) illustrates the measured performance of the differencing algorithm in
stdiff, our first structural differencing tool, discussed in Section 4.3.2. For fa and fb be
the files being differenced, we have only timed the call to diff fa fb –which excludes pars-
ing. Note that most of the time, stdiff exhibits a runtime proportional to the square of
the input size. That was expected since it relies on a quadratic algorithm to annotate the
trees and then translate the annotated trees into Patchst over a single pass. Out of the
8428 datapoints where we attempted to time stdiff in order to produce Figure 6.1(a),
913 took longer than thirty seconds and 929 used more than 8GB of memory. The rest
are plotted in Figure 6.1(a). The high memory usage for particularly large examples is
unsurprising. Computing a stdiff patch requires us to maintain and manipulate a
number of singleton types and constraints.

Figure 6.1(b) illustrates themeasured performance of the differencing algorithm un-
derlying hdiff, discussed in Section 5.1.4. We have plotted each of the context extrac-
tion techniques described in 5.1.4.2. The linear behavior is evident and in general, an
order of magnitude better than stdiff. We do see, however, that the proper context
extraction is slightly slower than nonest or patience. Finally, only 14 calls timed-out
and none used more than 8GB of memory.

Measuring performance of pure Haskell code is subtle due to its lazy evaluation se-
mantics. We have used the time auxiliary function below. We based ourselves on the
timeit package, but adapted it to fully force the evaluation of the result of the action,
with the deepseq method and force its execution with the bang pattern in res, ensuring
the thunk is fully evaluated.

time ∶∶ (NFData a) ⇒ IO a→ IO (Double , a)
time act = do t1 ← getCPUTime

result← act
let ! res = result ‵deepseq‵ result
t2 ← getCPUTime
return (fromIntegral (t2 − t1) ∗ 1𝑒−12 , res)
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Language success (ratio) mdif (ratio) total ratio conf t/o

Clojure 184 (0.15) 211 (0.17) 0.32 818 0
Java 978 (0.34) 479 (0.16) 0.5 1 443 1
JavaScript 1 046 (0.30) 274 (0.08) 0.38 2 062 10
Lua 185 (0.25) 101 (0.14) 0.39 462 0
Python 907 (0.21) 561 (0.13) 0.34 2 829 1

Total 3 300 (0.26) 1626 (0.13) 0.39 7 614 12

Table 6.2: Best synchronization success rate per language. No apply-fail was encoun-
tered in the entire dataset and the number of timeouts was negligible.

6.3 Synchronization

While the performance measurements provide some empirical evidence that hdiff is
indeed linear, the synchronization experiment, discussed in this section, aims at estab-
lishing a lower bound on the number of conflicts that could be solved in practice.

The synchronization experiment consists of attempting to merge the 𝐴 ← 𝑂 →
𝐵 span for every datapoint. If hdiff produces a patch with no conflicts, we apply it
to 𝑂 and compare the result against 𝑀, which was produced by a human. There are
four possible outcomes, three of which we expect to see and one that would indicate
a more substantial problem. The three outcomes we expect to see are: success, which
indicates the merge was successful and was equal to that produced by a human; mdif
which indicates that themerge was successful but different from themanual merge; and
finally conf which means that the merge was unsuccessful. The other possible outcome
comes from producing a patch that cannot be applied to O, which is referred to as apply-
fail. Naturally, timeout or out-of-memory exceptions can still occur and fall under other.
The merge experiment was capped at 45 seconds of runtime and 8GB of virtual memory.

The distinction between success and mdif is important. Being able to merge a con-
flict but obtaining a different result from what was committed by a human does not
necessarily imply that either result is wrong. Developers can perform more or fewer
modifications when committing M. For example, Figure 6.2 illustrates an example dis-
tilled from our dataset which the human performed an extra operation when merging,
namely adapting the sheet field of one replica. It can also be the case that the devel-
oper made a mistake which was fixed in a later commit. Therefore, a result ofmdif in a
datapoint does not immediately indicate the wrong behavior of our merging algorithm.
The success rate, however, provides us with a reasonable lower bound on the number of
conflicts that can be solved automatically, in practice.
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Language Mode Height success (ratio) mdif (ratio) conf t/o

Clojure
Patience 1 184 (0.15) 211 (0.17) 818 0
NoNested 3 149 (0.12) 190 (0.16) 874 0
ProperShare 9 92 (0.08) 84 (0.07) 1 037 0

Java
Patience 1 978 (0.34) 479 (0.16) 1 443 1
NoNested 3 924 (0.32) 509 (0.18) 1 467 1
ProperShare 9 548 (0.19) 197 (0.07) 2 155 1

JavaScript
Patience 1 1 046 (0.30) 274 (0.08) 2 062 10
NoNested 3 991 (0.29) 273 (0.08) 2 124 4
ProperShare 9 748 (0.22) 116 (0.03) 2 508 20

Lua
Patience 3 185 (0.25) 101 (0.14) 462 0
NoNested 3 171 (0.23) 110 (0.15) 467 0
ProperShare 9 86 (0.11) 29 (0.04) 633 0

Python
Patience 1 907 (0.21) 561 (0.13) 2 829 1
NoNested 3 830 (0.19) 602 (0.14) 2 865 1
ProperShare 9 446 (0.10) 223 (0.05) 3 627 2

Table 6.3: Best results for each extraction mode. The height column indicates the
minimum height a subtree must have to qualify for sharing, configured with the
--min-height option. All of the above results were obtained with locally-scoped
patches. Globally-scoped success rates were consistently lower than their locally-scoped
counterpart.
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d={name='A', sheet='a'
,name='B', sheet='b'
,name='C', sheet='c'}

(a) Replica A

d={name='A', sheet='path/a'
,name='B', sheet='path/b'
,name='X', sheet='path/x'
,name='C', sheet='path/c'}

(b) Replica B

d={name='A', sheet='path/a'
,name='B', sheet='path/b'
,name='C', sheet='path/c'}

(c) Common ancestor, O

d={name='A', sheet='a'
,name='B', sheet='b'
,name='X', sheet='x'
,name='C', sheet='c'}

(d)Merge produced by a human

d={name='A', sheet='a'
,name='B', sheet='b'
,name='X', sheet='path/x'
,name='C', sheet='c'}
(e)Merge produced by hdiff

Figure 6.2: Example distilled from hawkthorne-server-lua, commit 60eba8.
One replica introduced entries in a dictionary where another transformed a system path.
The hdiff tool did produce a correct merge given, but this got classified as mdif.

Given the multitude of dials we can adjust in hdiff, we have run the experiment
with each combination of extractionmethod (Patience ,NoNested ,ProperShare), local or
global metavariable scoping and minimum sharing height of 1, 3 and 9. Table 6.3 shows
the combination of parameters that yielded more successes per extraction method. The
column for scoping is omitted because local scope outperformed global scoping in all
instances. Table 6.2 shows only the highest success rate per language.

The varying true success rates seen in Table 6.3 are to be expected. Different param-
eters used with hdiff yield different patches, whichmight be easier or harder to merge.
Out of the datapoints that resulted in mdif we have manually analyzed 16 randomly
selected cases. We witnessed that in 13 of those hdiff behaved as we expect, and the
mdif result was attributed to the human performing more operations than a structural
merge would have performed, as exemplified in Figure 6.2, which was distilled from the
manually analyzed cases. We will shortly discuss two cases, illustrated in Figures 6.3
and 6.4, where hdiff behaved unexpectedly.

It is worth noting that even though 100% success rate is unachievable – some con-
flicts really come from a subtree being modified in two distinct ways and inevitably re-
quire human intervention – the results we have seen are very encouraging. In Table 6.2
we see thathdiff produces amerge in at least 39% of datapoints andmost oftenmatches
the handmade merge.



140 6.3 SYNCHRONIZATION

The cases where the same datapoint yields a true success and amdif, depending on
which extraction method was used, are interesting. Let us look at two complementary
examples (Figures 6.3 and 6.4) that were distilled from these contradicting cases.

Figure 6.3 shows an example wheremerging patches extractedwith Patience returns
the correct result, but merging patches extracted with NoNest does not. Because replica
A modified the definition of f, the entire declaration of f cannot be copied, and it is
placed inside the same scope (alignment) as the definition of g since they share a name,
x. They also share, however, the list of method modifiers, which in this case is public.
When B modifies the list of modifiers of method g by appending static, the merge
algorithm replicates this change to the list of modifiers of f, since the patch wrongly
believes both lists represent the same list. Merging with Patience does not witness the
problem since it will not share x not the modifier list, as these occur more than once in
the deletion and insertion context of both hdiff O A and hdiff O B.

Figure 6.4, on the other hand, shows an example where merging patches extracted
with NoNested succeeds, but Patience inserts a declaration in an unexpected location.
Upon further inspection, however, the reason for the diverging behavior becomes clear.
When differencing A and O under Patience context extraction, the empty bodies (which
are represented in the Java AST byMethodBody Nothing) of the declarations of n and o
are not shared. Hence, the alignment mechanism wrongly identifies that both n and o
were deleted. Moreover, because C.g() is uniquely shared between the definition of m
and S, the patch identifies that void m... became String S.... Finally, the merge
algorithm then transforms void m into String S, but then sees two deletions, which
trigger the deletion of n and o from the spine. The next instruction is the insertion of
X, resulting in the non-intuitive placement of X in the merge produced with Patience.
When using NoNested, however, the empty bodies get all shared through the code and
prevent the detection of a deletion by the alignment algorithm. It is worth noting that
just because Java does not care about the order of declarations, this is not acceptable
behavior since it could produce invalid source files in a language like Agda, where the
order of declarations matters, for example.

The examples in Figures 6.3 and 6.4 illustrate an inherent difficulty of using naive
structured differencing over structures with complex semantics, such as source-code.
On the one hand sharing method modifiers triggers undesired replication of a change.
On the other, the lack of sharing of empty method bodies makes it difficult to place an
insertion in its correct position.

When hdiff returned a patch with conflicts, that is, we could not successfully solve
the merge, we recorded the class of conflicts we observed. Table 6.4 shows the distri-
bution of each conflict type throughout the dataset. Note that a patch resulting from a
merge can havemultiple conflicts. This information is useful for deciding which aspects
of the merge algorithm can yield better results.
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class Class {
public int f(int x)
{ F(x*y); }

public int g(int x)
{ G(x+2); }}

(a) A.java

class Class {
public int f(int x)

{ F(x); }
public int g(int x)

{ G(x+1); }}

(b) O.java

class Class {
public int f(int x)

{ F(x); }
public static int g(int x)

{ G(x+1); }}

(c) B.java

class Class {
public int f(int x)

{ F(x*y); }
public static int g(int x)

{ G(x+2); }}

(d) Expected merge, computed with Patience

class Class {
public static int f(int x)

{ F(x*y); }
public static int g(int x)

{ G(x+2); }}

(e) Incorrect merge, computed with NoNest

class Class

(∶)

Method f

#𝑝 #𝑝 #𝑖 #𝑖 …

#𝑥 *

#𝑥 y

(∶)

Method g

#𝑝 #𝑝 #𝑖 #𝑖 …

1 2

[ ]

Al

↦ ↦

↦ ↦ ↦

↦

(f) Simplified illustration of patch computed with hdiff -d nonest {O,A}.java. The
sharing of #p reflects the sharing of the list of method modifiers.

class Class

(∶)

Cpy #f (∶)

Method g

(∶)

#𝑝 [ ]

(∶)

#𝑝 (∶)

static [ ]

Cpy #typ Cpy #bdy

[ ]

Al

↦
Al Al

(g) Simplified illustration of patch computed with hdiff -d nonest
{O,B}.java, note how each copy happens inside its own scope

Figure 6.3: Example distilled from cas, commit 035eae3, where Patience merges with
a true success but NoNest merges withmdif, and, in fact, replicates the staticmodifier
incorrectly.
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class Class {
String S = C.g();
void m ()

{ return; }
void o (int l);
void p ();

}

(a) A.java

class Class {
void m ()

{ C.q.g(); return; }
void n ();
void o ();
void p ();

}

(b) O.java

class Class {
void m ()

{ C.q.g(); return; }
void n ();
void o ();
void X ();
void p ();

}

(c) B.java

class Class {
String S = C.g();
void m ()

{ return; }
void o (int l);
void X ();
void p ();

}

(d) Expected merge, computed with
NoNested

class Class {
String S = C.g();
void X ();
void m ()

{ return; }
void o (int l);
void p ();

}

(e) Incorrect merge, computed
with Patience

Figure 6.4: Example distilled from spring-boot, commit 0074e9, where NoNested
merges with a true success but Patience merges withmdif since it inserts the declaration
of X in the wrong place.

no
t-
eq

in
st
-m
od

de
l-
sp
n

in
s-
in
s

in
st
-i
ns

in
st
-d
el

Others

Amount 7904 5052 2144 1892 868 357 506
Ratio 0.42 0.27 0.11 0.1 0.05 0.02 0.03

Table 6.4: Distribution of conflicts observed by running hdiff over our dataset [72].
The first row displays the number of times that throwConf was called with which label.
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6.3.1 Threats to Validity

The synchronization experiment is encouraging, but before drawing conclusions how-
ever, we must analyze our assumptions and setting and preemptively understand which
factors could also be influencing the numbers.

We are differencing and comparing objects after parsing. This means that com-
ments and formatting data were completely ignored. In fact, preliminary evaluations
showed that a vastly inferior success rate results from incorporating and considering
source-location tokens in the abstract syntax tree. This is expected since the insertion
of a single empty line, for example, will change the hashes that identify all subsequent
elements of the abstract syntax and stop them from being shared. The source-location
tokens essentially prevent the transformations that happen further down the file to be
detected by hdiff. Although stdiff would not suffer from this problem, it is already
impractical by itself.

Our decision to ignore formatting, comments and source-location tokens is twofold.
First, the majority of the available parsers does not include said information. Secondly,
if we had considered all that information in our merging process, the final numbers
would not inform us about how many code transformations are disjoint and could be
automatically merged.

Another case worth noting is that although we have not found many cases where
hdiff performed a wrong merge, Figures 6.3 and 6.4 shows two such cases, hence, it is
important to take the aggregate success ratewith a grain of salt. There exists a probability
that some of the mdif cases are false positives, that is, hdiff produced a merge but it
performed the wrong operation.

Finally, one can also argue we have not considered conflicts that arise from rebasing,
as these are not observed in the git history. This does not necessarily make a threat to
validity, but indeed would have given us more data. That being said, we would only be
able to recreate rebases done through the GitHub web interface. The rebases done on
the command line are impossible to recreate.

6.4 Discussion

This chapter provided an empirical evaluation of our methods and techniques. We ob-
served how stdiff is at least one order of magnitude slower than hdiff, confirm-
ing our suspicion of it being unusable in practice. Preliminary synchronization exper-
iments done with stdiff over the same data revealed a comparatively small success
rate. Around 15% of the conflicts could be solved, out of which 60% did match what a
human did.
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Themeasurements forhdiff, on the other hand, gave impressive results. Evenwith
all the overhead introduced by generic programming and an unoptimized algorithm, we
can still compute patches almost instantaneously. Moreover, it confirms our intuition
that the differencing algorithm underlying hdiff is in fact linear. Moreover, the syn-
chronization results for hdiff are encouraging. We have observed that 39% of the con-
flicts in our dataset could be solved by hdiff and 66% of these solutions didmatchwhat
a human performed.

An interesting observation that comes from the synchronization experiment, Ta-
ble 6.3, is that the best merging success rate for all languages used the Patience context
extraction – only copying subtrees that occur uniquely. This suggests that it might be
worthwhile to forbid duplication and contractions on the representation level and work
on a merging algorithm that enjoys the precondition that each metavariable occurs only
twice. This simplification could enable us to write a simpler merging algorithm and an
Agdamodel, which can then be used to prove important properties about our algorithms.
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Discussion
Even though the main topic of this thesis is structural differencing, a significant part of
the contribution lies in the field of generic programming. The two libraries we wrote
make it possible to use powerful generic programming techniques over larger classes of
datatypes than what was previously available. In particular, defining the generic inter-
pretation as a cofree comonad and a free monad combined in a single datatype is very
powerful. Being able to annotate and augment datatypes, for example, was paramount
for scaling our algorithms.

On structural differencing, we have explored two preliminary approaches. A first
method, stdiff, was presented in Chapter 4 and revealed itself to be inpractical due
to poor performance. The second method, hdiff, introduced in Chapter 5, has shown
much greater potential. Empirical results were discussed in Chapter 6.

7.1 The Future of Structural Differencing

The larger picture of structural differencing is more subtle, though. It is not because
our preliminary prototype has shown good results that we are ready to scale it to be the
next git merge. There are three main difficulties in applying structural differencing
to source-code with the objective of writing better merge algorithms:

a) How to properly handle formatting and comments of source code: should theAST
keep this information? If so, the tree matching must be adapted to cope with this.
Two equal treesmust bematched regardless of whether or not they appeared with
a different formatting in their respective source files.
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b) How to ensure that subtrees are only being shared within their respective scope
and, equally importantly, how to specify which datatypes of the AST are affected
by scopes.

c) Whenmerging fails, returning a patch with conflicts, a humanmust interact with
the tool and solve the conflicts. What kind of interface would be suitable for that?
Further ahead, comes the question of automatic conflict solving domain-specific
languages. Could we configure the merge algorithm to always chose higher ver-
sion numbers, for example, whenever it finds a conflict in, say, a config file?

Fixing the obstacles above in a generic way would require a significant effort. So
much so that it makes me question the applicability of structural differencing for the
exclusive purpose of merging source-code. From a broader perspective, however, there
are many other interesting applications that could benefit from structural differencing
techniques. In particular, we can probably use structural differencing to aid any task
where a human does not directly edit the files being analyzed or when the result of the
analysis require no further interaction. For example, it should be possible to deploy
hdiff to provide a human readable summary of a patch, something that looks at the
working directory, computes the structural diffs between the various files, just like git
diff, but displays information in the lines of:

some/project/dir $ hsummary
function fact refactored;
definition of fact changed;
import statements added;

In combination with the powerful web interfaces of services like GitHub or GitLab,
we could also use tools likehdiff to study the evolution of code or to inform the assignee
of a pull request whether or not it detected the changes to be structurally disjoint. If
nothing else, we could at least direct the attention of the developers to the locations
in the source-code where there are actual conflicts and the developer has to make a
choice. That iswheremistakes aremore likely to bemade. Oneway of circumventing the
formatting and comment issues above is towrite a tool that checkswhether the developer
included all changes in a sensible way and warns them otherwise, but it is always a
human performing the actual merge.

Finally, differencing file formats that are based on JSON or XML, such as document
processors and spreadsheet processors, might bemuch easier than source code. Take the
formatting of a .odf file for example. It is automatically generated and independent of
the formatting of document inside the file and it has no scoping or sharing inside, hence,
it would be simpler to deploy a structural merging tool over .odf files. Some care must
be taken with the unordered trees, even though our conjecture is that hdiff would
behave mostly alright.
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7.2 Future Work

Although the long term future of structural differencing specifically for source-code ver-
sioning is uncertain, there are numerous fronts to continue working on many of the as-
pects developed and discussed in this dissertation, in particular, hdiff (Chapter 5). We
refer the interested reader to Section 5.4 for a more detailed discussion on these topics,
but proceed with a summary of interesting directions for future work.

One clear option for further work is the improvement of the merge algorithm, pre-
sented in Section 5.3. A good way to start could be restricting hdiff to produce only lin-
ear patches (context extraction with Patience option) and use these guarantees to study
and develop amerge algorithm in amore disciplined fashion. It is possible that the extra
guarantees that are provided by linear patches (metavariables are used only once) would
simplify the algorithm to the point where we can start thinking about proving proper-
ties about it. We would hope that some simplifications would remove the need for some
of the more ad-hoc checks that are currently present in the merge algorithm – take the
example from Figure 5.32, which feels overly complicated and with no real good justifi-
cation besides having found these situation in practice. Finally, our experiments have
shown us that the Patience extraction method gives superior success rates anyway.

Another interesting frontwould be to define the type ofChg in awell-scopedmanner,
essentially using De Bruijn indicies. This would pottentially complicate some of the
simpler parts of hdiff but could provide important insight into how to handle variables
when merging in a very disciplined way. Different representations for Chg could also
shed some light on how to better control which subtrees can be shared or not.

The actual implementation of hdiff could also benefit from furtherwork. We could
work on optimizing the generic programming libraries for performance, rewriting parts
of the code to use standard implementationswell-knowndata structures instead, or even
better visualization of patches using pretty printers.

Finally, the metatheory surrounding hdiff’s Chg and Patch should be worked on.
In Section 5.1.3we have seen howChg forms a partialmonoidwith a simple composition
operation, but we also seen how the trivial inverse operaton does not give us a partial
group. It could give us an inverse semigroup, for it has a weaker notion of inverse. In fact,
Darcs patch theory have been formalised with inverse semigrougs [47]. Additionally,
using the canonical extension order (i.e., comparing domains of application functions)
is not a great option for defining the best patch. It would be interesting to see whether
a categorical approach, similar to Mimram’s work [71], could provide more educated
insights in that direction.
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7.3 Concluding Remarks

This dissertation explored a novel approach to structural differencing and a success-
ful prototype for computing and merging patches for said approach. The main novelty
comes from relying on unrestricted tree-matchings, which are possible becausewe never
translate to an edit-script-like structure. We have identified the challenges of employing
such techniques to merging of source-code but still achieved encouraging empirical re-
sults. In the process of developing our prototypes we have also improved the Haskell
ecosystem for generic programming.
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Source-Code and Dataset
A.1 Source-Code

The easiest way to obtain the source is through either GitHub or Hackage. The source
code for the different projects discussed throughout this dissertation is publicly available
as Haskell packages, on Hackage:

• hackage.haskell.org/package/generics-mrsop

• hackage.haskell.org/package/simplistic-generics

• hackage.haskell.org/package/generics-mrsop-gdiff

• hackage.haskell.org/package/hdiff

The actual version of hdiff that we have documented and used to obtain the results
presented in this dissertation has been archived on Zenodo [73].

A.2 Dataset

The dataset [72] was obtained by running the data collection script (Section 6.1) over
the repositories listed in Table A.1, on the 16𝑡ℎ of January of 2020. It is also available in
Zenodo for download.

hackage.haskell.org/package/generics-mrsop
hackage.haskell.org/package/simplistic-generics
hackage.haskell.org/package/generics-mrsop-gdiff
hackage.haskell.org/package/hdiff
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Table A.1: Repositories used for data collection.

Language Repository Conflicts Commits Forks

Clojure metabase/metabase 411 18697 25
Clojure onyx-platform/onyx 189 6828 209
Clojure incanter/incanter 96 1593 286
Clojure nathanmarz/cascalog 68 1366 181
Clojure overtone/overtone 65 3070 413
Clojure technomancy/leiningen 46 4736 15
Clojure ring-clojure/ring 44 1027 441
Clojure ztellman/aleph 43 1398 213
Clojure pedestal/pedestal 35 1581 248
Clojure circleci/frontend 33 18857 170
Clojure arcadia-unity/Arcadia 25 1716 95
Clojure walmartlabs/lacinia 19 991 105
Clojure clojure/clojurescript 18 5706 730
Clojure oakes/Nightcode 17 1914 119
Clojure weavejester/compojure 16 943 245
Clojure boot-clj/boot 12 1331 169
Clojure clojure-liberator/liberator 12 406 144
Clojure originrose/cortex 11 1045 103
Clojure dakrone/clj-http 9 1198 368
Clojure bhauman/lein-figwheel 9 1833 221
Clojure jonase/kibit 9 436 124
Clojure riemann/riemann 7 1717 512
Clojure korma/Korma 7 491 232
Clojure clojure/core.async 4 564 181
Clojure status-im/status-react 3 5224 723
Clojure cemerick/friend 2 227 122
Clojure LightTable/LightTable 1 1265 927
Clojure krisajenkins/yesql 1 285 112
Clojure cgrand/enlive 1 321 144
Clojure plumatic/schema 1 825 244

Java spring-projects/spring-boot 760 24545 284
Java elastic/elasticsearch 746 49920 158
Java apereo/cas 363 15834 31
Java jenkinsci/jenkins 296 29141 6
Java xetorthio/jedis 147 1610 32
Java google/ExoPlayer 133 7694 44
Java apache/storm 117 10204 4
Java junit-team/junit4 77 2427 29
Java skylot/jadx 52 1165 24
Java naver/pinpoint 51 10931 3
Java apache/beam 34 25062 22
Java baomidou/mybatis-plus 31 3640 21
Java mybatis/mybatis-3 21 3164 83
Java dropwizard/dropwizard 20 5229 31
Java SeleniumHQ/selenium 18 24627 54
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Table A.1: Repositories used for data collection (continued).

Language Repository Conflicts Commits Forks

Java code4craft/webmagic 11 1015 37
Java aws/aws-sdk-java 7 2340 24
Java spring-projects/spring-security 7 8339 36
Java eclipse/deeplearning4j 6 572 48
Java square/okhttp 5 4407 78

JavaScript meteor/meteor 1208 22501 51
JavaScript adobe/brackets 699 17782 66
JavaScript mrdoob/three.js 403 31473 22
JavaScript moment/moment 141 3724 65
JavaScript RocketChat/Rocket.Chat 125 17445 55
JavaScript serverless/serverless 118 12278 39
JavaScript nodejs/node 99 29302 159
JavaScript twbs/bootstrap 86 19261 679
JavaScript photonstorm/phaser 80 13958 61
JavaScript emberjs/ember.js 76 19460 42
JavaScript atom/atom 63 37335 137
JavaScript TryGhost/Ghost 50 10374 7
JavaScript jquery/jquery 44 6453 19
JavaScript mozilla/pdf.js 41 12132 69
JavaScript Leaflet/Leaflet 37 6810 44
JavaScript expressjs/express 36 5558 79
JavaScript hexojs/hexo 27 3146 38
JavaScript videojs/video.js 17 3509 63
JavaScript facebook/react 10 12732 273
JavaScript jashkenas/underscore 8 2447 55
JavaScript lodash/lodash 8 7992 46
JavaScript axios/axios 8 900 6
JavaScript select2/select2 3 2573 58
JavaScript chartjs/Chart.js 3 2966 101
JavaScript facebook/jest 2 4595 41
JavaScript vuejs/vue 1 3076 234
JavaScript nwjs/nw.js 1 3913 38

Lua Kong/kong 209 5494 31
Lua hawkthorne/hawkthorne-journey 155 5538 370
Lua snabbco/snabb 119 9456 295
Lua tarantool/tarantool 54 13542 224
Lua luarocks/luarocks 45 2325 296
Lua luakit/luakit 28 4186 219
Lua pkulchenko/ZeroBraneStudio 20 3945 447
Lua CorsixTH/CorsixTH 16 3355 250
Lua OpenNMT/OpenNMT 14 1684 455
Lua koreader/koreader 14 7256 710
Lua bakpakin/Fennel 12 689 59
Lua Olivine-Labs/busted 9 950 139
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Table A.1: Repositories used for data collection (continued).

Language Repository Conflicts Commits Forks

Lua Element-Research/rnn 8 622 318
Lua lcpz/awesome-copycats 8 821 412
Lua Tieske/Penlight 6 743 190
Lua yagop/telegram-bot 5 729 519
Lua awesomeWM/awesome 5 9990 360
Lua torch/nn 4 1839 967
Lua luvit/luvit 4 2897 330
Lua GUI/lua-resty-auto-ssl 3 318 119
Lua alexazhou/VeryNginx 3 604 810
Lua sailorproject/sailor 2 640 128
Lua leafo/moonscript 2 738 162
Lua nrk/redis-lua 1 327 193
Lua skywind3000/z.lua 1 367 59
Lua rxi/json.lua 1 46 144
Lua luafun/luafun 1 55 88

Python python/cpython 891 106167 131
Python sympy/sympy 864 41009 29
Python matplotlib/matplotlib 515 32949 47
Python home-assistant/home-assistant 496 23812 91
Python bokeh/bokeh 326 18196 32
Python certbot/certbot 272 9524 28
Python scikit-learn/scikit-learn 192 25044 19
Python explosion/spaCy 163 11141 27
Python docker/compose 129 5590 29
Python scrapy/scrapy 74 7705 83
Python keras-team/keras 70 5342 176
Python tornadoweb/tornado 60 4144 51
Python pallets/flask 56 3799 132
Python ipython/ipython 51 24203 39
Python pandas-dev/pandas 48 21596 92
Python quantopian/zipline 45 6032 31
Python Theano/Theano 44 28099 25
Python psf/requests 32 5927 75
Python ansible/ansible 29 48864 18
Python nvbn/thefuck 11 1555 26
Python waditu/tushare 8 407 35
Python facebook/prophet 4 445 26
Python jakubroztocil/httpie 3 1145 29
Python binux/pyspider 1 1174 34
Python Jack-Cherish/python-spider 1 279 39
Python zulip/zulip 1 34149 35
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Samenvatting
De UNIX diff tool – die het verschil tussen twee bestanden berekent in termen van de
verzameling regels die gekopieerd worden – wordt veel gebruikt bij het versiebeheer van
software. De vaste granulariteit, regels code, is helaas soms te grof en verhult eenvoudige
wijzigingen. Bijvoorbeeld, door het hernoemen van een parameter van een functie kun-
nen vele verschillende regels veranderen. Dit kan leiden tot onnodige conflicten wan-
neer ongerelateerde wijzigingen toevallig op dezelfde regel code plaatsvinden. Het is
daarom lastig om zulke wijzigingen automatisch te combineren.

Traditionele methodes om verschillen te bepalen tussen een bronbestand en doelbe-
stand [16, 14, 84, 46, 79, 44]maken gebruik van een edit-script, die de veranderingen doc-
umenteren om het bronbestand in het doelbestand te transformeren. Zulke edit-scripts
bestaan uit een reeks edit-operaties, zoals het invoegen, verwijderen of kopieëren van
een regel. Beschouw bijvoorbeeld de volgende twee bestanden:

1 res := 0;
2 for (i in is) {
3 res += i;
4 }

1 print("summing up");
2 sum := 0;
3 for (i in is) {
4 sum += i;
5 }

Regels 2 en 4 in het bronbestand links komen overeenmet regels 3 en 5 in het doelbe-
stand rechts. Deze worden dan ook geïdentificeerd als kopieën. De overige regels wor-
den verwijderd of ingevoegd. In dit voorbeeld worden regels 1 en 3 uit het bronbestand
verwijderd; regels 1,2 en 4 worden in het doelbestand ingevoegd.

Deze informatie over welke afzonderlijke regels zijn gekopieerd, verwijderd of in-
gevoegd wordt dan samengebracht in een edit script: een lijst operaties die een bronbe-
stand transformeert in een doelbestand. In het voorbeeld hierboven, zou het edit-script
bestaan uit een serie edit-operaties als: verwijder een regel; voeg twee nieuwe regels in;
kopieer een regel; verwijder een regel; enz. De uitvoer van UNIX diff bestaat uit zo’n
lijst operaties. Verwijderingen worden aangeduid door een regel te beginnen met een
minteken; invoegingen worden aangeduid met een plusteken. In ons voorbeeld zou het
resultaat van UNIX diff bestaan uit de volgende regels:

- res := 0;
+ print("summing up");
+ sum := 0;

for (i in is) {
- res += i;
+ sum += i;

}

Er bestaan veel generalisaties van edit-scripts die niet werken met regels code, maar
bomen [114, 27, 28, 87, 8, 9], maar veel van dit werk heeft significante nadelen. Om te
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beginnen, edit-scripts zijn niet in staat om willekeurige permutaties, duplicaties, of con-
tracties (de inverse van duplicaties) uit te drukken. Ten tweede, hebben de meeste van
deze algoritmen een significant slechtere performance dan UNIX diff. Tot slot, houdt
het meeste van dit werk zich bezig met ongetypeerde bomen, dat wil zeggen, dat ze geen
garanties geven over of de resulterende edit-scripts een zekere structuur, ookwel bekend
als een schema, behoudt. Het is mogelijk om getypeerde edit-scripts te ontwerpen [55],
maar dit pakt nog niet alle bovengenoemde nadelen aan.

In dit proefschrift bespreken we twee nieuwe manieren om het verschil te bepalen
tussen ‘gestructureerde data’, zoals bomen, die zich niet langer beperken tot alleen edit-
scripts. De eerste aanpak definieert een type-geïndexeerde representatie van wijzigin-
gen en geeft een helder algoritme om twee verschillende wijzigingen samen te voegen,
maar is helaas computationeel te duur om bruikbaar te zijn. De tweede aanpak is een
stuk efficiënter door het kiezen van eenmeer extensionele representatie vanwijzigingen.
Hierdoor kunnen we allerlei transformaties uitdrukken die gebruik maken van invoeg-
ingen, verwijderingen, duplicaties, contracties en permutaties, en deze in lineaire tijd
berekenen.

Stel, we moeten een wijziging beschrijven in de linkerdeelboom van een binaire
boom. Als we een hele programmeertaal zoals Haskell tot onze beschikking zouden
hebben, zouden we iets kunnen schrijven als de functie c in Figure A.1(a). Merk hierbij
op dat deze functie een duidelijk domein heeft – de verzameling bomen die, wanneer
c erop toegepast wordt een Just constructor opleveren. Dit domein wordt bepaald door
de patronen en “guards” die de functie c gebruikt. Zo bepalen we voor elke boom in
dit domein, een bijbehorend resultaat in het codomein. Deze nieuwe boom kunnen
we bepalen door in de oude boom de waarde 10 te vervangen door 42. Bij nadere in-
spectie, zien we dat we het pattern-matchen op de invoerboom kunnen opvatten als
het (mogelijk) verwijderen van bepaalde deelbomen; de constructie van de resultaat-
boom kunnen we beschouwen als het invoegen van nieuwe deelbomen. Het hdiff al-
goritme dat wij in dit proefschrift ontwikkelen representeert een wijziging c dan ook
als een patroon en een expressie. Zo kunnen we de wijziging van c beschrijven als
Chg (Bin (Leaf 10) y) (Bin (Leaf 42) y) – zoals we illustreren in Figure A.1(b).

Doordat onze wijzigingen een rijkere expressiviteit genieten, wordt het samenvoe-
gen van zulke wijzigingen complexer. Als gevolg hiervan wordt het algoritme om twee
wijzigingen te verenigen ingewikkelder en kan het soms lastiger worden om over de
wijzigingen te redeneren.

Deze twee verschillende algoritmes om het verschil tussen gestructureerde data te
berekenen kunnen worden toegepast op wederzijds recursieve datatypes, met als gevolg
dat ze gebruikt kunnen worden om computerprogramma’s te vergelijken. Om dit te im-
plementerenwas niet eenvoudig, enwehebben in de context van dit proefschrift dan ook
verschillende nieuwe bibliotheken voor generiek programmeren in Haskell ontwikkeld.
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c ∶∶ Tree→ Maybe Tree
c (Bin (Leaf x) y)

∣ x ≡ 10 = Just (Bin (Leaf 42) y)
∣ otherwise = Nothing

c = Nothing
(a) Haskell functie c

Bin

Leaf

10

#𝑦

Bin

Leaf

42

#𝑦

↦

(b) c gerepresenteerd als een
wijziging

Figure A.1: Een Haskell functie en de bijbehorende grafische representatie als wijziging.
Deze wijziging past de linkerdeelboom van een binaire knoop aan. De notatie #y wordt
gebruikt om aan te geven dat y een metavariabele is.

Tot slot, hebben we een empirische evaluatie van onze algoritmes uitgevoerd aan
de hand van conflicten die we hebben verzameld van GitHub. Uit deze evaluatie blijkt
dat ten minste 26% van de conflicten die softwareontwikkelaars dagelijks tegenkomen,
voorkomenhaddenkunnenwordenmet de technologie die in dit proefschrift ontwikkeld
wordt. Dit doet vermoeden dat er nog veel winst te behalen is in het gebruik van betere
algoritmes als basis voor het versiebeheer van software.
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