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A B S T R AC T

It is very common to hear that pen-and-paper mathematics run smoother than computer-aided reason-

ing. The biggest pointed problem being the overhead of information one has to provide a computer

to be able to perform simple reasoning, with the upside being the absolute certainty that one is cor-

rect. One such tool for computer reasoning is Agda, a dependently typed, pure, functional language.

We explore this language in its two fronts: a proof-assistant and a programming language. On the

proof-assistant side, we have developed a library for Relational Algebraic reasoning, which handles

a big portion of the relational calculus, including a prototype of generic catamorphisms. However,

the overhead of code is still present when reasoning with our library. We tackle this by automating

the context inference of substitutions, based on the reflection mechanism of Agda. Our tactics allow

one to perform rewrites just like on pen-and-paper mathematics. Several tactics, some of which are

experimental generalizations of simpler variants, are presented with a thorough discussion on how do

they work. The full source code corresponding to this dissertation is available on the internet.
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1

P R E L U D E

1.1 I N T RO D U C T I O N

Although formal logic can be traced back to Aristotle, most of the groundbreaking work was done

around the end of the 19th and early 20th centuries: the specification of propositional calculus; what

we now know as predicate logic and other developments. The quest for bootstrapping mathematics,

that is, formalizing mathematics in formal logic, was being pursued by many. A notorious attempt was

made by Russel and Whitehead in Principia Mathematica, [31], where they believed that all mathe-

matical truths could be derived from inference rules and axioms, therefore opening up the question of

automated reasoning. Yet, in 1931, Kurt Gödel published his famous first and second incompleteness

theorems. In a (very small) nutshell, they state that there are some truths that are not provable, regard-

less of the axiomatic system chosen. This question was further addressed by Alonzo Church and Alan

Turing, in the late 1930s. This is when a definite notion of computability first arose (in fact they gave

two, independent, definitions).

Armed with a formal notion of computation, mathematicians could finally start to explore this newly

founded world, which we call Computing Science nowadays. Problems started to be categorized in

different classes due to their complexity. In fact, some problems could now be proven to be unsolvable.

Whenever we encounter such problem, we must work with approximations and subproblems that we

know we can compute a solution for.

Given a formula in a logic system, the question of whether or not such a formula is true can vary from

trivial to impossible. The simplest case is, of course, propositional logic, where validity is decidable

but not at all that interesting for software verification in general. We need more expressive formal

systems in order to encode software specifications, as they usually involve quantification or even

modal aspects. A holy grail for formal verification would be the construction of a fully automatic

theorem prover, which is very hard (if not impossible) to achieve. Instead, whenever the task requires

an expressive system, we could only provide a guiding hand to our fellow mathematicians. This is

what we call a Proof Assistant.

3



1.2. The Agda language

Proof Assistants are highly dependent on which logic they can understand. With the development

of more expressive logics, comes the development of better proof assistants. Such tools are used to

mitigate simple mistakes, automate trivial operations, and make sure the mathematician is not working

on any incongruence. Besides the obvious verification of proofs, a proof assistant also opens up a lot of

room for proof automation. By automating mechanical tasks in the development of critical software

or models we can help the programmer to focus on what is really important rather than making he

write boilerplate code that is mechanical in nature.

As we said above, proof assistants depend on the logic they run on top of. Some of them, however,

support some form of meta programming. That is, we can write programs that generate programs.

This is achieved by having the programming language itself as a first class datatype. Examples include

LISP and Prolog. One of the goals of this project is to explore how can we exploit such feature to

automate the repetitive task of rewriting terms for other, proven to be equal, terms.

The tool of choice for this project is the Agda language, developed at Chalmers [23]. Agda uses

a intensional variant of Martin-Löf’s theory of types and provides a nice interactive construction

feature. After the Curry-Howard isomorphism [14], interactive program construction and assisted

theorem proving are essentially the same thing. The usual routine of an Agda programmer is to write

some code, with some holes for the unfinished parts, and then ask the typechecker which types should

such holes have. This is done interactively. Yet, trivial operations to write on paper usually require

additional code for discharging in Agda. One such example is its failure to automatically recognize

i + 1 and 1 + i as returning the same value. The usual strategy is to rewrite this subterm of our goal

using a commutativity proof for +.

Small rewrites are quite simple to perform using the rewrite keyword. If we need to perform equa-

tional reasoning over complex formulas, though, we are going to need to specify the substitutions

manually in order to apply a theorem to a subterm. The main objective of this project is to work

around this limitation and provide a smarter rewriting mechanism for Agda. Our main case study is

the equational proofs for relational algebra [6], which also involves the construction of a relational

algebra library suited for rewriting.

1.2 T H E AG DA L A N G UAG E

Although functional languages have been receiving great attention and a fast evolution in recent years,

one of the biggest jumps has been the introduction of dependent types. Agda[23] is one such language,

other big contributions being Epigram [19] and Coq [5].

In languages such as Haskell or ML, where a Hindley-Milner based algorithm is used for type check-

ing, values and types are clearly separated. Within dependent types, though, the story changes. A
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1.2. The Agda language

type can depend on any value the programmer wishes. Classical examples are the fixed size vectors

Vec A n, where A is the type of the elements and n is the length of the vector. Readers familiar with

C may argue that C also has fixed size arrays. The difference is that this n need not to be known at

compile time: it can be an arbitrary term , as long as it has type Nat. That is, there is no difference

between types and values, they are all sets, explained in the sequel.

This chapter introduces the basics of Agda and shows some examples in both the programming and

the proof theoretic sides of the language. Later on, in section 2.2, we will see the theory in which

Agda is built on top of, whereby a number of concepts introduced below will become clearer. Some

background on the λ-calculus and the Curry-Howard isomorphism is presented in section 2.1.

1.2.1 Peano Naturals

In terms of programming, Agda and Haskell are very close. Agda’s syntax was inspired by Haskell

and, being also a functional language, a lot of the programming techniques we need to use in Haskell

also apply for an Agda program. Knowledge of Haskell is not strictly necessary, but of a great value

for a better understating of Agda.

The Hello World program in Agda is the encoding of Peano’s Natural numbers, which follows:

data Nat : Set where
zero : Nat
succ : Nat→ Nat

Data declarations in Agda are very similar to a GADTs[32] in Haskell. Remember that, in Agda, types

and values are the same thing. The data declaration above states that Nat is of type Set . This Set is

the type of types, to be addressed in more detail later. For now, think of it as Haskell’s ∗ kind.

As expected, definitions are made by structural induction over the data type. Alas in Haskell, pattern

matching is the mechanism of choice here.

_+_ : Nat→ Nat→ Nat
zero + m = m
(succ n) + m = succ (n + m)

_*_ : Nat→ Nat→ Nat
zero * _ = zero
(succ n) * m = m + (n * m)

5



1.2. The Agda language

There are a few points of interest in the above definitions. The underscore pattern (_) has the same

meaning as in Haskell, it matches anything. The underscore in the symbol name, though, indicates

where the parameters should be relative to the symbol name. Agda supports mixfix operators and

has full UTF8 support. It is possible to apply a mixfix operator in normal infix form, for instance:

a+ b = _ + _ a b.

1.2.2 Propositional Logic, a fragment

Let us continue our exposition of Agda by encoding some propositional logic. First of all two sets are

needed for representing the truth values:

data > : Set where
tt : >

data ⊥ : Set where

⊥-elim : {A : Set}→⊥→ A
⊥-elim ()

The truth proposition has only one proof, and this proof is trivial. So we define> as a set with a single,

constant, constructor. The absurd is modeled as a set with no constructors, therefore no elements. In

the theory of types, this means that there is no proof for the proposition ⊥, as expected. Note the

definition of ⊥-elim, whose type is ⊥ → A, for all sets A1. This exactly captures the notion of

proof by contradiction in logic. The definition is trickier, though. Agda’s empty pattern, (), is used

to discharge a contradiction. It tells that there is no possible pattern in such equation, and we are

discharged of writing a right-hand side.

Let us now show how to encode a fragment of propositional logic in this framework. Taking conjunc-

tion as a first candidate, we begin by declaring the set that represents conjunctions:

data _/\_ (A B : Set) : Set where
<_,_> : A→ B→ A /\ B

So, A /\ B contains elements with a proof of A and a proof of B. Its elements can only be constructed

with the <_,_> constructor. The reader familiar with Natural Deduction might recognize the following

trivial properties. Given D a set:

1. Formation rules for D express the conditions under which D is a set. In our example, whenever

A and B are sets, then so is A /\ B.

1 Implicit parameters such as {A : Set} are enclosed in brackets. This can be read as universal quantification in the type level.
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1.2. The Agda language

2. Introduction rules for D define the set D, that is, they specify how the canonical elements of D
are constructed. For the conjunction case, the elements of A /\ B have the form < a , b >, where

a ∈ A and b ∈ B.

3. Elimination rules show how to prove a proposition about an arbitrary element in D. They are

very closely related to structural induction. The Agda equivalent is pattern matching, where we

deconstruct, or eliminate, an element until we find the first constructor. Note that the proofs of

/\-elim are simply pattern matching.

4. Equality rules give us the equalities which are associated with D. Without diving too much, in

the simple case above, < a, b >==< a′, b′ > whenever a == a′ and b == b′.

As detailed below in section 2.2, these properties come for free whenever we introduce a new set

forming operation, that is, a data declaration in Agda. In fact, each set forming operation D offers the

four kinds or rules just given.

An analogous technique can be employed to encode disjunction. Note the similarity with Haskell’s

Either datatype (they are the same, in fact). The elimination rule for disjunction is a proof by cases.

data _\/_ (A B : Set) : Set where
inl : A→ A \/ B
inr : B→ A \/ B

\/-elim : {A B C : Set}→ (A→ C)→ (B→ C)→ A \/ B→ C
\/-elim p1 p2 (inl x) = p1 x
\/-elim p1 p2 (inr x) = p2 x

As a trivial example, we can prove that conjunction distributes over disjunction.

\/-/\-dist : {A B C : Set}→ A /\ (B \/ C)→ (A /\ B) \/ (A /\ C)
\/-/\-dist < x , y > = \/-elim (ń b→ inl < x , b >) (ń c→ inr < x , c >) y

Using this fragment of natural deduction, we can start proving things. Consider a simple proposition

saying that an element of a nonempty list l1 ++l2, where ++ is concatenation, either is in l1 or in l2.

For this all that is required is to: encode lists in Agda, provide a definition for ++, encode a view of

the elements in a list and finally prove our proposition.

Defining the type of lists is a boring task, and the definition is just like its Haskell counterpart. One

can just import the definition from the standard library and go to the interesting part right away.
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1.2. The Agda language

open import Data.List using (List; _::_; [])

_++_ : ∀{a}{A : Set a}→ List A→ List A→ List A
[] ++ l = l
(x :: xs) ++ l = x :: (xs ++ l)

data In {A : Set} : A→ List A→ Set where
InHead : {xs : List A}{x : A}→ In x (x :: xs)
InTail : {x : A}{xs : List A}{y : A}→ In y xs→ In y (x :: xs)

Looking closely to this code, we one finds a set forming operation In, that receives one implicit

parameter A and is indexed by an element of A and a List A. Indeed, In x l is the proposition that

states that x is an element of l. How is such a proof constructed? There are two ways of doing so.

Either y is in l’s head, as captured by the InHead constructor, or it is in l’s tail, and a proof of such

statement is required, in the InTail constructor. The reader may wonder about the statement In y [],

which should be impossible to construct. One can see, just from the types, that we cannot construct

such a statement. The result of both In constructors involve non-empty lists and they are the only

constructors we are allowed to use. So, the non-empty list requirement in the proposition we are

trying to prove comes for free.

We proceed to showing how to state the proposition mentioned above and carry out its proof step by

step, as this is an interesting example. The proposition is stated as follows:

inDistr : {A : Set}(l1 l2 : List A)(x : A)
→ In x (l1 ++ l2)→ In x l1 \/ In x l2

The variables enclosed in normal parentheses are called telescopes, and they introduce the dependent

function type (x : A) → B x, in general, x can appear on the right-hand side of the function type

constructor,→. In this proof, we need an implicit set A, two lists of A, an element of A and a proof

that such element is in the concatenation of the two lists. The proof follows by induction on the first

list.

inDistr [] l2 x prf = inr prf

If the first list is empty, [] ++l2 reduces to l2. So, prf has type In x l2, which is just what we need to

create a disjunction. If not empty, though, then it has a head and a tail:

inDistr (x :: l) l2 .x InHead = inl InHead

Now we have to also pattern-match on pr f . If it says that our element is in the head of our list, the

result is also very simple. The repetition of the symbol x in the left hand side is allowed as long as all

duplicate occurrences are preceded by a dot. These are called dotted patterns and tell Agda that this is

8



1.2. The Agda language

the only possible value for that pattern. We can see this by reasoning with InHead type, In x (x :: l).
So, if l1 = (x :: l) and we have pr f = In x (x :: l), that is, a proof that x is in l1’s head, we can only

be looking for x.

inDistr (x :: l1) l2 y (InTail i)
= \/-elim (ń a→ inl (InTail a)) inr (inDistr l1 l2 y i)

In case our element is not in l1’s head, it might be either in the rest of l1 or in l2. Note that we pass

a structurally smaller proof to the recursive call. This is a condition required by Agda’s termination

checker.

1.2.3 Finite Types

The theory of types is not only roses. The soundness requirement is that every function must terminate.

In fact, Agda passes all definitions through its termination checker and if it does not recognize a

definition as terminating, it will output an error.

An interesting technique to write terminating functions is to use finite types. One example where

we need to use such finite types is first-order unification, as in [18]. As the unification algorithm

progresses, the terms are growing bigger, since variables are being substituted by (possibly) more

complex terms. Yet, the number of variables to be substituted decreases by one in each step. This is

modeled by a function with type Fin (suc n)→ Fin n, where Fin n is a type with n elements.

Agda, and dependently typed languages in general, allows one to speak about type families in a very

structured way. To define the family (Fin n)n∈N of types with exactly n elements we proceed as

follows.

data Fin : N→ Set where
fz : {n : N}→ Fin (suc n)
fs : {n : N}→ Fin n→ Fin (suc n)

If we wish to enumerate, for instance, the inhabitants of type Fin 3, we would find that they are: fz, fs
fz and fs fs fz. Now, how many inhabitants does Fin 0 have? It is indeed an uninhabited type, which

is congruent with the intuition of having exactly zero elements.

The careful reader might have noticed a slight syntax difference between Fin’s definition and the

other datatypes presented before. In general, Agda allows one to define datatypes with parameters

p1, · · · , pn and indices i1, · · · , ik. The parameters works just like a Haskell type parameter. Indices,

on the other hand, is what allows us to define inductive families in Agda. As stated in the excerpt

above, the type of Fin is N→ Set. In a data declaration, parameters are the variables before the

9



1.3. The Problem

colon, whereas indices appear after the colon. Vectors of a fixed length are another famous inductive

family example.

1.2.4 Closing Remarks

The small introduction to Agda given above tells a tiny bit of what the language is capable of, both in

its programming side and its proof assistant side. All the concepts were introduced informally here,

with the intention of not overwhelming a unfamiliar reader. A lot of resources are available in the

Internet at the Agda Wiki page [1].

1.3 T H E P RO B L E M

As seen in section 1.2, Agda is a very expressive language and it allows us to build smaller proofs

than in the great majority of proof assistants available. The mixfix feature gives the language a very

customizable feel, one application being the equational reasoning framework. In the following illus-

tration of propositional equality we prove the associativity of the concatenation operation.

open import Relation.Binary.PropositionalEquality
open ≡-Reasoning

++-assocH : ∀{a}{A : Set a}(xs ys zs : List A)→
(xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)

++-assocH [] ys zs = refl
++-assocH (x :: xs) ys zs =

begin
((x :: xs) ++ ys) ++ zs

≡〈 refl 〉
x :: (xs ++ ys) ++ zs

≡〈 refl 〉
x :: ((xs ++ ys) ++ zs)

≡〈 cong (_::_ x) (++-assocH xs ys zs) 〉
x :: (xs ++ (ys ++ zs))

≡〈 refl 〉
(x :: xs) ++ (ys ++ zs)

�
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1.3. The Problem

The notation is clear and understandable, indeed looking very much what a squiggolist2 would write

on paper. One of the main downsides to it, which is also inherent to Agda in general, is the need to

specify every single detail of the proof, even the trivial ones. Note the trivial, yet explicit, (_::_x)
congruence being stated.

Aiming somewhat higher-level, we could actually generalize the congruences to substitutions, as long

as the underlying equality exhibits a substitutive behavior. We can borrow a excerpt from a relational

proof that the relation twice, defined by (a, 2× a) ∈ twice for all a ∈ N, preserves even numbers.

The actual code is much larger and will be omitted, as this is for illustration purposes only:

twiceIsEven : (twiceR • evenR ⊆ evenR • twiceR)⇐ Unit
twiceIsEven

= begin

twiceR • evenR ⊆ evenR • twiceR

⇐〈 substitute (ń x→ twiceR • evenR ⊆ x • twiceR) evenLemma 〉

twiceR • evenR ⊆ ρ twiceR • twiceR

⇐〈 substitute (ń x→ twiceR • evenR ⊆ x) (ρ-intro twiceR) 〉

twiceR • evenR ⊆ twiceR

⇐〈 substitute (ń x→ twiceR • evenR ⊆ x) (≡r-sym (•-id-r twiceR)) 〉

twiceR • evenR ⊆ twiceR • Id

⇐〈 •-monotony 〉

(twiceR ⊆ twiceR × evenR ⊆ Id)

⇐〈 (ń _→⊆-refl , F⊆Id) 〉

Unit
�

Besides the obvious Agda boilerplate, it is simple to see how the substitutive3 behavior of Relational

Equality can become a burden to write in every single step, nevertheless such factor is also what

allows us to rewrite arbitrary terms in a formula. The main idea is to provide an automatic mechanism

2 Squiggol is a slang name for the Bird–Meertens formalism[6], due to the squiggly symbols it uses.
3 As we shall see later, this is not the case, and this example was heavily modified due to the encoding of relational equality

not being a substitutive relation in Agda.
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1.4. Structure of the Dissertation

to infer the first argument for the substitute function, making equational reasoning much cleaner in

Agda.

Alongside the development of such functionality, based on Agda’s reflection capabilities (that is, to

access and modify a program AST in compile time), we also want to develop a library for Relational

Algebra, focused on its equational reasoning aspect. Both tasks have to walk with hands tied, since

their design is mutually dependent as illustrated later.

The work documented by this thesis is, therefore, split into two main tasks:

1. Provide an Agda library for Relational Algebra that is suitable for

2. Equational Reasoning with automatic substitution inference.

It is worth mentioning that although Relations are our main case study, we want our substitution

inference to work independently of the proof context. For instance, a very direct application would

be to facilitate the calculation of extended static checking, as in [24], from where the twice preserves

even numbers case study was taken (page 216).

1.4 S T RU C T U R E O F T H E D I S S E RTAT I O N

This document starts with a basic mathematical background, in chapter 2, where we try to help the

unfamiliar reader to understand how programming and proving are intrinsically connected. These

ideas are very important to have a solid understanding of the Agda language, which we introduced,

shallowly, in section 1.2.

We follow with the description of our Relational Algebra library, chapter 3, where we explore the full

expresivity of dependent types to encode relations in such a way that they remain useful for automatic

proving. The library is by no means complete and should be taken as an exploration of what is possible

or not. The code behaves very well until we start to use generic catamorphisms.

Chapter 4 will focus on rewriting. The context in which we immerse ourselves is given by sections

4.1 and 4.2, the rest of the chapter is concerned with explaining the basic form of rewriting one can

automate. Generalizations on this rewriting framework follows on chapter 5.

On chapter 6 we give pointers for future work and conclude the work.
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2

BAC K G RO U N D

This chapter is concerned with background concepts. The idea is to keep this dissertation as mathe-

matically self contained as possible, although for a full understanding of this kind of topics, further

reading is necessary. Some very important basic ideas are introduced below that provide the underly-

ing foundations of proof assistants such as Agda.

As already mentioned in section 1.2, Agda is both a programming language and a proof assistant.

The programming side of Agda is a pure functional language and is built on top of the (dependently

typed) λ-calculus. Such a formalism will be briefly presented in section 2.1. The proof assistant view,

on the other hand, lies on top of the Curry-Howard isomorphism, which will be presented in section

2.1.4. Yet, Agda seems to be more general than the Curry-Howard isomorphism since it can handle

first order logic out of the box. This generalization is explained in 2.2, where a surface description of

Martin Löf’s theory of types is given.

The reader familiar with these topics can safely skip this chapter.

2.1 N OT E S O N λ - C A L C U L U S A N D T Y P E S

What is known as the λ-calculus is a collection of various formal systems based on the notation

invented by Alonzo Church in [9, 8]. Church solved the famous Entscheidungsproblem (the German

for decision problem) proposed by David Hilbert, in 1928. The challenge consisted in providing

an algorithm capable of determining whether or not a given mathematical fact was valid in a given

language. Church proved that there is no solution for such problem, that is, it is an undecidable

problem.

One of Church’s main objectives was to build a formal system for the foundations of Mathematics, just

like Martin-Löf’s type theory, which was to be presented much later, around 1970. Church dropped

his work when his basis was found to be inconsistent. Later on it was found that there were ways of

making it consistent again, with the help of types.
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2.1. Notes on λ-calculus and Types

The notion of type is paramount for this dissertation as a whole. This notion arises when we want

to combine different terms in a given language. For instance, it makes no sense to try to compute∫
N dx. Although syntactically correct, the subterms have different types and, therefore, are not

compatible. A type can be seen as a categorization of terms.

For a thorough introduction of the lambda-calculus, the reader is directed to [3, 12]. The goal of this

chapter is to provide a minimal understanding of the λ-calculus, which will allow a better understand-

ing of Martin-Löf’s type theory and how logic is encoded in such formalism.

2.1.1 The λ-calculus

Definition 2.1 (Lambda-terms). Let V = {v1 , v2 , · · · } be a infinite set of variables, C = {c1 , c2 , · · · }
a set of constants such that V ∩ C = ∅. The set Λ of lambda-terms is inductively defined by:

AT O M S

V ∪ C ⊂ Λ

A P P L I C AT I O N

∀M , N ∈ Λ . (M N ) ∈ Λ

A B S T R AC T I O N

∀M ∈ Λ , x ∈ V . (λx . M) ∈ Λ

Let us adopt some conventions that will be useful throughout this document. Terms will usually be

denoted by uppercase letters M , N , O , P , · · · and variables by lower cases x , y , z , · · · . Applica-

tion is left associative, that is, the term M NO represents ((M N )O) whereas abstractions are right

associative, so, λxy .K represents (λx .(λy .K)).

Suppose we have a term λyz .x(yz). We say that variables y and z are bounded variables and x
is a free variable (as there is no visible abstraction binding it). From now on, we’ll use Barendregt’s

convention for variables and assume that terms do not have any name clashing. In fact, whenever we

have two terms M and N that only differ in the naming of their variables, for instance λx .x and

λy .y, we say that they are α-convertible.
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2.1. Notes on λ-calculus and Types

Definition 2.2 (Substitution). Let M and N be lambda-terms where x has a free occurrence in M.

The substitution of x by N in M, denoted by [N /x ]M is, informally, the result of replacing every

free occurrence of x in M by N . It is defined by induction on M by:

[N /x ]x = N

[N /x ]y = y , y 6= x

[N /x ](M1 M2 ) = [N /x ]M1 [N /x ]M2

[N /x ](λy . M) = (λy . [N /x ]M)

2.1.2 Beta reduction and Confluence

Equipped with both a notion of term and a formal definition of substitution, we can now model the

notion of computation. The intuitive meaning is very simple. Imagine a normal function f (x) = x+ 3
and suppose we want to compute f (2). All we have to do is to substitute x for 2 in the body of f (x),
resulting in 2 + 3.

This notion is followed to the letter in the λ-calculus. A term with the form (λx.M)N is called a

β-redex and can be reduced to [N/x]M. If a given term has no β-redexes we say it is in β-normal

form.

Definition 2.3 (β-reduction). Let M, M′ and N be lambda-terms and x a variable. Let →β be the

following binary relation over Λ defined by induction on M.

(λx.M)N →β [N/x]M

M→β M′

(λx.M)→β (λx.M′)

M→β M′

MN →β M′N

M→β M′

NM→β NM′

We use the notation by M �β N when N is obtained through zero or more β-reductions from M.

Definition 2.4 (β-equality). Let M and N be lambda terms, M and N are said to be β-equal, and

denote this by M =β N if M �β N or N �β M.

Theorem 2.1 (Confluency). Let M, N1 and N2 be lambda terms. If M →β N1 and M →β N2 then

there exists a term Z such that Ni �β Z, for i ∈ {1, 2}.
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2.1. Notes on λ-calculus and Types

Theorem 2.2 (Church-Rosser). Let M and N be lambda-terms such that M =β N. Then there exists

a term Z such that M �β Z and N �β Z.

Note that the aforementioned results are of enormous relevance not only for the λ-calculus, but for

similar formalisms too. They allow us to prove that, for instance, the normal form of a lambda-term

(if it exists1) is unique. In fact, lambda-calculus consistency is proved using these results [3].

2.1.3 Simply typed λ-calculus

Definition 2.5 (Type). Given CT = {σ, σ′, · · · } a set of atomic types, we define the set T of simple

types by induction, as the least set built by the clauses:

1. CT ⊂ T

2. ∀σ, τ ∈ T. (σ→ τ) ∈ T.

In any programming context, one is always surrounded by variable declarations. Some languages (the

strongly-typed ones) expect some information about the type of such variables. This is what we call a

context. Formally, a context is a set Γ ⊆ V ×T, whose elements are denoted by (x : σ).

This allows us to define the notions of derivation and derivability, almost closing the gap between

programming and logic.

Definition 2.6 (Derivation). We define the set of all type derivations by induction in the target lambda-

term:

1.

Γ ` x : σ
(Ax)

2. ....
Γ, x : τ ` M : σ

Γ ` (λx.M) : (τ → σ)
(I →)

3. ....
Γ ` M : (τ → σ)

....
Γ ` N : τ

Γ ` MN : σ
(E→)

Definition 2.7 (Derivability). Let Γ be a context, M a lambda-term and σ a type. We say that the

sequent Γ ` M : σ is derivable if there exists a derivation with such sequent as its conclusion.

1 There are terms that do not have a normal form. A classical example is (λx.xx)(λx.xx). The reader is invited to compute
a few β-reductions on it.
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2.1. Notes on λ-calculus and Types

The simply-typed λ-calculus is a model of computation. It has the same expressive power as the

Turing Machine for expressing computability notions. This is a very well studied subject and the

references provided in this chapter are a compilation of everything that has been studied so far. For

more typed variations of the λ-calculus we refer the reader to [4]. We’re not interested in that aspect

of the λ-calculus, though. We rather want to explore the connection with Mathematical logic.

2.1.4 The Curry-Howard Isomorphism

On one hand we have the models of computation, on the other hand we have the proof systems. A a

first glance, they look like very different formalism’s, but they turned out to be structurally the same.

Let M be a term and Γ a context such that Γ ` M : σ is derivable. We can look at σ as a propositional

formula2 and to M as a proof of such formula. There are other ways to show this connection, but

we will illustrate it using the Natural Deduction[25] (propositional implication will be denoted by

⊃). Let’s put the rules presented in definition 2.6 side-by-side with the Axiom, ⊃-elimination and

⊃-introduction rules from Natural Deduction;

Natural Deduction Type Derivation

σ Γ ` M : σ
(Ax)

[τ]....
σ

τ ⊃ σ (I ⊃)
Γ, x : τ ` M : σ

Γ ` (λx.M) : (τ → σ)
(I →)

τ ⊃ σ τ
σ (E ⊃)

Γ ` M : (τ → σ) Γ ` N : τ

Γ ` MN : σ
(E→)

This seemingly shallow equivalence is a remarkable result in Computing Science, discovered by Curry

and Howard in [10, 14]. This was the starting point for the first proof checkers, since checking a proof

is the same as typing a lambda-term. If the term is typeable, then the proof is valid. This far we have

only presented the simpler version of this connection. Another layer will be built on top of it and add

all ingredients for working over first-order logic, in the next section. Behind the curtains, all Agda

does is type-checking terms.

2 Remember that the implication, here denoted by ⊂, forms a minimal complete connective set and is, therefore, enough to
express the whole propositional logic.
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2.2. Martin-Löf’s Type Theory

The understanding of this connection is of major importance for writing proofs and programs in Agda

(or any other proof-assistant based on the Curry-Howard isomorphism, for that mater).

2.2 M A RT I N - L Ö F ’ S T Y P E T H E O RY

Type theory was originally developed with the goal of offering a clarification, or basis, for constructive

Mathematics. However, unlike most other formalizations of mathematics, it is not based on first order

logic. Therefore, we need to introduce the symbols and rules we’ll use before presenting the theory

itself. The heart of this interpretation of proofs as programs is the Curry-Howard isomorphism, already

explained in section 2.1.

Martin-Löf’s theory of types [16] is an extension of regular type theory. This extended interpretation

includes universal and existential quantification. A proposition is interpreted as a set whose elements

are proofs of such proposition. Therefore, any true proposition is a non-empty set and any false

proposition is a empty set, meaning that there is no proof for such proposition. Apart from sets as

propositions, we can look at sets from a specification angle, and this is the most interesting view for

programming. A given element a of a set A can be viewed as: a proof for proposition A; a program

satisfying the specification A; or even a solution to problem A.

This chapter we’ll explain the basics of the theory of types (in its intensional variation) trying to

establish connections with the Agda language. It begins by providing some basic notions and the

interpretation of propositional logic into set theory. We’ll follow with the notion of arity, which

differs from the canonical meaning, finishing with a small discussion on the dependent product and

sums operators, which closes the gap to first order logic. The interested reader should continue with

[22] or, for a more practical view, [26, 7]

2.2.1 Constructive Mathematics

The line between Computer Science and Constructive Mathematics is very thin. The primitive object

is the notion of a function from a set A to a set B. Such function can be viewed as a program that,

when applied to an element a ∈ A will construct an element b ∈ B. This means that every function

we use in constructive mathematics is computable.

Using the constructive mindset to prove things is also very closely related to building a computer

program. That is, to prove a proposition ∀x1, x2 ∈ A . ∃y ∈ B . Q(x1, x2, y) for a given predicate Q
is to give a function that when applied to two elements a1, a2 of A will give an element b in B such

that Q(a1, a2, b) holds.
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2.2. Martin-Löf’s Type Theory

2.2.2 Propositions as Sets

In classical mathematics, a proposition is thought of as being either true or false, and it doesn’t matter

if we can prove or disprove it. On a different angle, a proposition is constructively true if we have a

method for proving it. A classical example is the law of excluded middle, A ∨ ¬A, which is trivially

true since A can only be true or false. Constructively, though, a method for proving a disjunction must

prove that one of the disjuncts holds. Since we cannot prove an arbitrary proposition A, we have no

proof for A ∨ ¬A.

Therefore, we have that the constructive explanation of propositions is built in terms of proofs, and

not an independent mathematical object. The interpretation we are going to present here is due to

Heyting at [11].

A B S U R D , ⊥, is identified with the empty set, ∅. That is, a set with no elements or a proposition

with no proof.

I M P L I C AT I O N , A ⊃ B is viewed as the set of functions from A to B, denoted BA. That is, a

proof of A ⊃ B is a function that, given a proof of A, returns a proof of B.

C O N J U N C T I O N , A ∧ B is identified with the cartesian product A× B. That is, a proof of A ∧ B
is a pair whose first component is a proof of A and second component is a proof of B. Let us denote

the first and second projections of a given pair by π1 and π2. The elements of A× B are of the form

(a, b), where a ∈ A and b ∈ B.

D I S J U N C T I O N , A ∨ B is identified with the disjoint union A + B. A proof of A ∨ B is either a

proof of A or a proof of B. The elements of A + B are of the form i1 a and i2 b with a ∈ A and

b ∈ B.

N E G AT I O N , ¬A, can be identified relying on its definition on the minimal logic, A ⊃ ⊥

So far, we defined propositional logic using sets (types) that are available in almost every program-

ming language. Quantifications, though, require operations defined over a family of sets, possibly

depending on a given value. The intuitionist explanation of the existential quantifier is as follows:

E X I S T S , ∃a ∈ A . P(a) consists of a pair whose first component is one element i ∈ A and whose

second component is a proof of P(i). More generally, we can identify it with the disjoint union of a

19



2.2. Martin-Löf’s Type Theory

family of sets, denoted by Σ(x ∈ A, B(x)), or just Σ(A, B). The elements of Σ(A, B) are of the form

(a, b) where a ∈ A and b ∈ P(a).

F O R A L L , ∀a ∈ A . P(a) is a function that gives a proof of P(a) for each a ∈ A given as input.

The correspondent set is the cartesian product of a family of sets Π(x ∈ A, B(x)). The elements of

such set are the aforementioned functions. The same notation simplification takes place here, and we

denote it by Π(A, B). The elements of such set are of the form λx . b(x) where b(x) ∈ B(x) for

x ∈ A.

2.2.3 Expressions

Thus far now we have identified the sets needed to express first order formulas, but we did not mention

what an expression is. In fact, in the theory of types, an expression is a very abstract notion. We are

going to define the set E of all expressions by induction shortly.

It is worth remembering that Martin-Löf’s theory of types was intended to be a foundation for math-

ematics. It makes sense, therefore, to base our definitions in standard mathematical expressions. For

instance, consider the syntax of an expression in the CCS calculus [20] E ∼ Σ{a.E′ | E a−→ E′}3; we

have a large range of syntactical elements that we don’t usually think about when writing mathematics

on paper. For instance, the variables a and E′ works just as placeholders, which are abstractions cre-

ated at the predicate level in the common set-by-comprehension syntax. We then have the application

of a summation Σ to the resulting set, where this symbol represents a built-in operation, just like the

congruence _ ∼ _. These are exactly the elements that will allow us to build expressions in the theory

of types.

Definition 2.8 (Expressions).

A P P L I C AT I O N ; Let k, e1, · · · , en ∈ E be expressions of suitable arity. The application of k to

e1, · · · , en denoted by (k e1 · · · en), is also an expression.

A B S T R AC T I O N ; Let e ∈ E be an expression with free occurrences of a variable x. We denote by

(x)e the expression where every free occurrence of x is interpreted as a hole, or context. So,

(x)e ∈ E .

3 Expansion Lemma for CCS; States that every process (roughly a LTS) is equivalent to the sum of its derivatives. The
notation E a−→ E′ states a transition from E to E′ through label a.
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2.2. Martin-Löf’s Type Theory

C O M B I N AT I O N S ; Expressions can also be formed by combination. This is a less common construct.

Let e1, · · · , en ∈ E , we may form the expression:

e1, e2, · · · , en

which is the combination of the ei, i ∈ {1, · · · , n}. This can be though of tupling things

together. Its main use is for handling complex objects as part of the theory. Consider the

scenario where one has a set A, an associative closed operation ⊕ and a distinguished element

a ∈ A, neutral for ⊕. We could talk about the monoid as an expression: A,⊕, a.

S E L E C T I O N ; Of course, if we can tuple things together, it makes sense to be able to tear things apart

too. Let e ∈ E be a combination with n elements. Then, for all i ∈ {1, · · · , n}, we have the

selection e.i ∈ E of the i-th component of e.

B U I LT- I N ’ S ; The built-in expressions are what makes the theory shine. Yet, they change according

to the flavor of the theory of types one is handling. They typically include zero and succ
for Peano’s encoding of the Naturals, together with a recursion principle natrec; Or nil, cons
and listrec for lists; Products and Coproduct constructors are also built-ins: 〈_, _〉 and inl, inr
respectively.

Definition 2.9 (Definitional Equality). Given two expressions d, e ∈ E , Should they be syntactical

synonyms, we say that they are definitionally or intensionally equal. This is denoted by d ≡ e.

From the expression definition rules, we can see a few equalities arising:

e ≡ ((x)e) x

ei ≡ (e1, · · · , en).i

As probably noticed, we mentioned expressions of suitable arity, but did not explain what arity means.

The notion of arity is somewhat different from what one would expect, it can be seen as a meta-type

of the expression, and indicates which expressions can be combined together.

Expressions are divided in a couple classes. It is either combined, from which we might select com-

ponents from it, or it is single. In addition, an expression can be either saturated or unsaturated. A

single saturated expression have arity 0, therefore, neither selection nor application can be performed.

Unsaturated expressions on the other hand, have arities of the form α � β, where α and β are them-

selves arities. The informal meaning of such arity is "give me an expression of arity α and I give an

expression of arity β", just like normal Haskell types.
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2.2. Martin-Löf’s Type Theory

For example, the built in succ has arity 0 � 0; the list constructor cons has arity (0⊗ 0) � 0, since

it takes two expressions of arity 0 and returns an expression. We will not go into much more detail on

arities. It is easy to see how they are inductively defined. We refer the reader to chapter 3 of [22].

Evaluation of expressions in the theory of types is performed in a lazy fashion, the semantics being

based in the notion of canonical expression. These canonical expressions are the values of programs

and, for each set, they have different formation conditions. The common property is that they must be

closed and saturated. It is closely related to the weak-head normal form concept in lambda calculus,

as illustrated in table 1.

Canonical Noncanonical Evaluated Fully Evaluated
12 f st 〈a, b〉 succ zero true
f alse 3× 3 succ (3 + 3) succ zero
(λx.x) (λx.snd x)p cons(4, app(nil, nil))4

Table 1: Expression Evaluation State

2.2.4 Judgement Forms

Standing on top of the basic constructors of the theory of types, we can start to discuss what kind of

judgement forms we can express and derive. In fact, Agda boils down to a tool that does not allow us

to make incorrect derivations. Type theory provides us with derivational rules to discuss the validity

of judgements of the form given in table 2

Sets Propositions
(i) A is a set. A is a proposition.
(ii) A and B are equal sets. A and B are equivalent propositions.
(iii) a is an element of a set A. a is a proof of A.
(iv) a and b are equal elements of a set A. a and b are the same proof.

Table 2: judgement Forms

When reading a set as a proposition, we might simplify (iii) to A is true, disregarding the proof. What

matters is the existence of the proof.

But then, let’s take (i) as an example. What does it means to be a set? To know that A is a set is to

know how to form the canonical elements of A and under what conditions two canonical elements are

equal. Therefore, to construct a set, we need to give a syntactical description of its canonical elements
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2.2. Martin-Löf’s Type Theory

and provide means to decide whether or not two canonical elements are equal. Let us take another

look at the Peano Naturals:

data Nat : Set where
zero : Nat
succ : Nat→ Nat

In fact defines a Set, whose canonical elements are either zero or succ applied to something. Equality

in Nat is indeed decidable, therefore we have a set in the theory of types sense.

The third form of judgement might also be slightly tricky. Given that A is a set, to know that a is an

element of A amounts to knowing that, when evaluated, a yields a canonical element in A as value.

Making the parallel to Agda again, this is what allows one to pattern match on terms.

To know that two sets are equal is to know that they have the same canonical elements, and equal

canonical elements in A are also equal canonical elements in B. Two elements are equal in a set when

their evaluation yields equal canonical elements.

For a proper presentation of the theory of types, we should generalize these judgement forms to cover

hypotheses. As this is not required for a stable understanding of Agda. we refer the reader to Martin-

Löf’s thesis [16, 17].

2.2.5 General Rules

A thorough explanation of the rules for the theory of types is outside the scope of this section. This is

just a simple illustration that might help unfamiliar readers to grasp Agda with some comfort, so that

they get a taste of what is happening behind the curtains. For this, it is enough to present the general

notion of rule, their syntax and give a simple example.

In the theory of types there are some general rules regarding equality and substitution, which can be

justified by the defined semantics. Then, for each set forming operation, there are rules for reasoning

about the set and its elements. These foremost classes of rules are divided into four kinds:

1. Formation rules for A describe the conditions under which A is a set and when another set B is

equal to A.

2. Introduction rules for A are used to construct the canonical elements. They describe how they

are formed and when two canonical elements of A are equal.

3. Elimination rules act as a structural induction principle for elements of A. They allow us to

prove propositions about arbitrary elements.
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4. Equality rules gives us the equalities which are associated with A.

The syntax will follow a natural deduction style. For example:

A set B(x) set [x ∈ A]

Π(A, B) set

The rule represents the formation rule for Π, and can be applied whenever A and B(x) are sets,

assuming that x ∈ A. judgements may take the form p = a ∈ A, meaning that if we compute the

program p, we get the canonical element a ∈ A as a result.

So far so good. But how do we use all these rules and interpretations? Let us to take the remaining fog

out of how Martin-Löf’s theory is Agda with the next example. For this, we need the set of booleans

and the set of intentional equality.

Boolean Values

The set {true, f alse} of boolean values is nothing more than an enumeration set. There are generic

rules to handle enumeration sets. For simplicity’s sake we are going to use an instantiated version of

such rules.

B set
B f orm true ∈ B

Bintro1 f alse ∈ B
Bintro2

C(b) set [b ∈ B] c ∈ C(true) d ∈ C( f alse)
(true ? c : d) = c ∈ C(true)

Beq1

C(b) set [b ∈ B] c ∈ C(true) d ∈ C( f alse)
( f alse ? c : d) = d ∈ C( f alse)

Beq2

b ∈ B C(v) set [v ∈ B] c ∈ C(true) d ∈ C( f alse)
(b ? c : d) ∈ C(b)

Belim

Intensional Equality

The set Id(A, p, a), for Id a primitive constant (with arity 0⊗ 0⊗ 0 � 0), represents the judgement

p = a ∈ A. Put into words, it means that the program p evaluates to a, which is a canonical element

of A. The elimination and equality rules for Id will not be presented here.
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A set a ∈ A b ∈ A
Id(A, a, b) set

Id f orm

a ∈ A
id(a) ∈ Id(A, a, a)

Idintro1
a = b ∈ A

id(a) ∈ Id(A, a, b)
Idintro2

From the introduction rules, we should be able to tell which are the canonical elements of Id. As an

exercise, the reader should compare the set Id with Agda’s Relation.Binary.PropositionalEquality4.

2.2.6 Epilogue

At this point we have briefly discussed the Curry-Howard isomorphism in both the simply-typed

version and the dependently typed flavor. We have presented (the very surface of) the theory of types

and which kind of logical judgements we can handle with it. But how does all this connect to Agda

and verification in general?

Software Verification with a functional language is somewhat different from doing the same with a

imperative language. If one is using C, for example, one would write the program and annotate it with

logical expressions. They are twofold. We can use pre-conditions, post-conditions and invariants to

deductively verify a program (these are in fact a variation of Hoare’s logic). Or, we can use Software

Model Checking, proving that for some bound of traces k, our formulas are satisfied.

When we arrive at the functional realm, our code is correct by construction. The type-system provides

both the annotation language and you can construct a program that either type-checks, therefore

respects its specification, or does not pass through the compiler. Remember that Agda’s type system

is the intensional variant of Martin-Löf’s theory of types, which was presented above in this chapter.

Let us now prove that, for any set A and a ∈ A, given a b ∈ B we have that (b ? a : a) = a.

Translating it to a more formal version, we want to prove that:

Id(A, (b ? a : a), a) [b ∈ B, a ∈ A] is inhabited.

Well, it suffices to show the existence of some element in the aforementioned set.

Let us denote the set Id(A, (x ? a : a), a) by φ(x), for any given set A and element a ∈ A. The

(partially omitted) derivation follows.

4 Available from the Agda Standard Library: https://github.com/agda/agda-stdlib
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b ∈ B

....
φ(v) set [v ∈ B]

A set a ∈ A
(true ? a : a) = a ∈ A

Beq1

id(a) ∈ φ(true)
Idintro

A set a ∈ A
( f alse ? a : a) = a ∈ A

Beq2

id(a) ∈ φ( f alse)
Idintro

(b ? id(a) : id(a)) ∈ φ(b)
Belim

Now, take a look at the same proof, encoded in Agda without anything from the standard library. Note

how some rules (like Belim) are built into the language, as pattern-matching, for instance.

data Bool : Set where
tt : Bool
ff : Bool

if_then_else_ : {A : Set}→ Bool→ A→ A→ A
if tt then x else _ = x
if ff then _ else x = x

data Id (A : Set)(x : A) : A→ Set where
id : (a : A)→ Id A x a

proof : {A : Set}{a : A}{b : Bool}→ Id A (if b then a else a) a
proof {a = a} {b = tt} = id a
proof {a = a} {b = ff} = id a

The Agda snippet above is fairly more readable than the actual derivation of our example lemma.

Understanding how one writes programs and very general proofs in the same language can be tough.

We hope to have exposed how Agda uses Martin-Löf’s theory of types in a very clever way, providing

a very expressive logic for theorem proving. The programming part of Agda is directly connected to

last chapter’s Curry-Howard Isomorphism. This concludes a big portion of the background needed

for understanding the rest of this dissertation.
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3

R E L AT I O NA L A L G E B R A I N AG DA

This work takes Relational Algebra[6] as main case study for a couple of reasons. One of the most

important is its expressive power and unquestionable advantage as a framework for reasoning about

software, in an equational fashion. Relational Algebra is in fact a discipline that allows us to speak of

software engineering through unambiguous equations, giving a definite meaning to the engineering

part of software engineering.

We are not the first to use Agda and Relational Algebra together, though. There are two approaches

that deserve to be mentioned and compared to what we are doing here. The first, which in fact should

be regarded as a basis for our work, is due to Mu et al, at [21]. The second, which is more abstract, is

due to Kahl, at [15].

This chapter will present and compare both approaches mentioned above, then introduce a basic en-

coding for relations. This will be followed by the discussion of several further options that would

change the handling of equality, which turned out to be a very delicate matter.

3.1 S TAT E O F T H E A RT

The current developments within Relational Algebra in Agda vary a lot, mainly due to different goals.

One has a plethora of options when developing a library. It is therefore important to weight options

against goals. As far as we know, at the time of writing, there is no library that fit our specific goals,

which are: (a) An expressive encoding of relational algebra; (b) easy to handle at the meta-level, for

automatic rewriting.

The library built by Kahl, [15], is not specific to Relational Algebra. Instead, Kahl chose to build

a library for Category Theory in general, from which one can use the specific category of relations,

Rel. The theories in RATH-Agda are intended for high-level programming, not so much focused on

theorem proving. Thus the equality problem we ran into is not handled in Kahl’s library. RATH-

Agda has both an equality up to isomorphism and intensional equality, which are not interchangeable.
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Later on, the library defines the relational operations on top of the categorical basis, also provided

by the library. Relational Equality is defined by mutual inclusion and, since no rewriting is intended,

substitutivity of relational equality is not provided. Another problem we would run into had we used

RATH-Agda is the quoted representation of terms. In Kahl’s library every construction is defined as a

top-level function, therefore it is expanded upon quoting.

Another interesting library is the one developed by Jansson, Mu and Ko at [21]. Their goal, how-

ever, is again very different from both RATH-Agda and this project. Mu, et al., are focusing on

deriving programs given specifications, which is a big merit of functional programming. Indeed, they

explore the equational reasoning of programs in order to keep refining programs. They also avoid the

non-extensional equality problem by defining another equality type and proving its substitutiveness

whenever necessary. Their main focus is on subrelation-reasoning, though.

3.2 E N C O D I N G R E L AT I O N S

Unlike most programming languages, an encoding of Relational Algebra in a dependently typed lan-

guage allows one to truly see the advantage of dependent types in action. Most of the definitions

happen at the type level (remember that there is no difference between types and values in Agda, this

is just a mnemonic to help understanding the functions). The encoding presented below is based on

[21], the most significant differences being due to extensional equality.

Long story short, a binary relation R of type A→ B can be thought of in terms of several mathematical

objects. The usual definition is to say that R ⊆ A× B, where · × · is the cartesian product of sets. In

fact, R contains pairs or related elements whose first component is of type A and second component

is of type B. Note this is more general than the concept of a function, where we can have b1 R a and

b2 R a, which means that (a, b1) ∈ R and (a, b2) ∈ R, as a perfectly valid relation, but not a function,

since a would be mapped to two different values, b1 and b2.

Another way of speaking about relations, though, is to consider functions of type A → PB. If

our previous R is to encoded as a function f , we will then have f a = {b1, b2}. For the more

mathematically inclined reader, the arrows A → PB in the category Sets, of sets and functions,

correspond to arrows A → B in the category Rel, of sets and relations. For this matter, we actually

call Rel the Kleisli Category for the monad P . In fact, we can make the encoding of relations as

functions more explicit by defining the so-called powerset transpose of a relation R, which is the

function that for each a returns the exact (possibly empty) subset of B that is related to a trough R.

This encoding is central in the Algebra of Programming book [6].

(Λ R) a = {b ∈ B | b R a}
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For our Agda encoding of Relations, we shall use a slight modification of the "P approach". We begin

by encoding set theoretic notions, the most important of all being undoubtedly the membership notion

· ∈ ·. One way of encoding a subset of a set A is using a function f of type A → Bool, the subset

being obtained by { a ∈ A | f a }. Yet, in Agda, this would force that we deal only with decidable

domains, which is not a problem if everything is finite, but for infinite domains this would not work.

Another option, which is the one used in [21], is to use a function f of type A → Set to en-

code a subset of A. Remember that Set is the type of types in Agda. Although not very intu-

itive, this is much more expressive than the last option, whereby the induced subset is defined by

{ a ∈ A | f a is inhabited }, which turns out to be:

P : Set→ Set1
P A = A→ Set

Extending from sets to binary relations is a very simple task. Besides the canonical steps, we’ll also

swap the arguments for a relation, following what is done in [21] and keeping the syntax closer to

what one would write on paper, since we usually write a relational statement from left to right, that is,

y R x means (x, y) ∈ R.

P(A× B) = P(B× A)

= B× A→ Set

= B→ A→ Set

Below we present the base encoding of relations in Agda following this plan, together with a few

constructs to help in their definition and to illustrate usage.

Rel : Set→ Set→ Set1
Rel A B = B→ A→ Set

_∪_ : {A B : Set}→ Rel A B→ Rel A B→ Rel A B
(R ∪ S) b a = R b a ] S b a

_∩_ : {A B : Set}→ Rel A B→ Rel A B→ Rel A B
(R ∩ S) b a = R b a × S b a

fun : {A B : Set}→ (A→ B)→ Rel A B
(fun f) b a = f a ≡ b

The operations are defined just as we would expect them to be. Note that _]_ represents a disjoint

union of sets (equivalent to Either in Haskell) and _×_ represents the usual cartesian product. The

function lifting might look like the less intuitive construction, but it’s a very simple one. fun f is
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a relation, therefore it takes a b and a a and should return a type that is inhabited if and only if

(a, b) ∈ f un f , or, to put it another way, if b ≡ f a, almost like its textbook definition.

3.3 R E L AT I O N A L E Q UA L I T Y

A notion of convertibility is paramount to any form of rewriting. In out scenario, whenever two rela-

tions are equal, we can substitute them back and forth in a given equation. There are a couple different,

but equivalent notions of equality. The simplest one is borrowed from set theory.

Definition 3.1 (Relation Inclusion). Let R and S be suitably typed binary relations, we say that R ⊆ S
if and only if for all a, b, if b R a then b S a.

Definition 3.2 (Relational Equality). For R and S as above, we say that R ≡r S if and only if R ⊆ S
and S ⊆ R.

Lemma 3.1. Relation Inclusion is a partial order, that is, ⊆ is reflexive, transitive and anti-symmetric.

And ≡r is an equivalence relation (reflexive, transitive and symmetric).

So far so good. At first sight one would believe that there are no problems with such definitions (and

in fact there will be no problem as long as we keep away from Agda, but then it would not be fun,

right?). Definitions were wrapped as datatypes in Agda to prevent expansion when using reflection,

this implies that we have some boilerplate code that must be coped with.

data _⊆_ {A B : Set}(R S : Rel A B) : Set where
⊆in : (∀ a b→ R b a→ S b a)→ R ⊆ S

The reader is invited to take a deeper look into what this definition means. Let R : Rel A B, for A
and B Sets, a : A and b : B. The statement R b a yields a Set, and an element r : R b a represents a

proof that b is related to a trough R. We have no interest in the contents of such proof though, as its

existence is what matters. In more formal terms, we would like that Rel returned a proof irrelevant

set. In Coq this would be Prop, but Agda has no set of propositions.

Such a problem comes to the surface once we try to use Agda’s propositional equality instead of ≡r

(and hence the name distinction) in the anti-symmetry proof:
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postulate
rel-ext : {A B : Set}{R S : Rel A B}
→ (∀ b a→ R b a ≡ S b a)
→ R ≡ S

naive1 : {A B : Set}{R S : Rel A B}
→ R ⊆ S→ S ⊆ R→ R ≡ S

naive1 (⊆in rs) (⊆in sr)
= rel-ext (ń b a→ ? )

We have to use functional extensionality anyway (here, disguised as rel-ext). But the type of our goal

is R b a ≡ S b a and the proof gets stuck since set equality is undecidable. What we want is that R
and S be inhabited at the same time.

So, it is clear that we also need some encoding of ≡r:

record _≡r_ {A B : Set}(R S : Rel A B) : Set where
constructor _,_
field

p1 : R ⊆ S
p2 : S ⊆ R

But this definition is not substitutive in Agda. Therefore we need to lift it to a substitutive definition

(otherwise we cannot perform rewrites). In fact, it is safe to lift it to the standard propositional equality.

The advantages of doing so are that we win all of the functionality to work with ≡ for free.

The solution we are currently adopting relies on using yet another disguised version of function exten-

sionality (here as powerset transpose extensionality) and on postulating the proof-irrelevant notion of

set equality (as in Set Theory):
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≡r-promote : {A B : Set}{R S : Rel A B}
→ R ≡r S→ R ≡ S

≡r-promote {R = R} {S = S} (⊆in rs , ⊆in sr)
= Λ-ext (ń a→ P-ext (flip R a) (flip S a) (rs a) (sr a))
where

Λ : {A B : Set}(R : Rel A B)→ A→ P B
Λ R = ń a b→ R b a

postulate
Λ-ext : {A B : Set}{R S : Rel A B}
→ (∀ a→ (Λ R) a ≡ (Λ S) a)
→ R ≡ S

P-ext : {A : Set}(s1 s2 : P A)
→ (∀ x→ s1 x→ s2 x)
→ (∀ x→ s2 x→ s1 x)
→ s1 ≡ s2

The powerset transpose postulate is pretty much function-extensionality with some syntactic sugar,

and it is known to not introduce any contradiction. But P-ext on the other hand, has to be justified.

The reason for such a postulate is just because somewhere in our library, we need a notion of proof-

irrelevance able to state relational equality. As discussed in the next section, there are a couple places

were we can insert this notion, but postulating it at the subsets (P) level is by far the easier to handle

and introduces the least amount of boilerplate code. (Remember that if a is a subset of A, that is

a : PA, stating a x is stating x ∈ a, for any x : A.).

There are a few other options of achieving a substitutive behavior for ≡r, as we shall present in the

next sections.

3.3.1 Hardcoded Proof Irrelevance

This idea of a proof irrelevant set was mentioned before, as was the fact that we postulated such notion,

which is not the ideal thing to do in Agda. We want to keep our postulates to an absolute minimum.

In order to formally talk about proof irrelevance we need some concepts from HoTT, the Homotopy

Type Theory[29]. HoTT is an immense and complex newly founded field of Mathematics, and we

are not going to explain it in detail. The general idea is to use abstract Homotopy Theory to interpret

types. In normal type theory, a statement a : A is interpreted as a is an element of the set A. In HoTT,

however, we say that a is a point in space A. Objects are seen as points in a space and the type a = b
is seen as a path from point a to point b. It is obvious that for every point a there is a path from a
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to a, therefore a = a, giving us reflexivity. If we have a path from a to b, we also have one from b
to a, resulting in symmetry. Chaining of paths together corresponds to transitivity. So we have an

equivalence relation =.

Even more important, is the fact that if we have a proof of P a and a = b, for a predicate P, we

can transport this proof along the path a = b and arrive at a proof of Pb. This corresponds to the

substitutive behavior of standard equality. Note though, that in classical mathematics, once an equality

x = y has been proved, we can just switch x and y wherever we want. In HoTT, however, there might

be more than one path from x to y, and they might yield different results. So, it is important to state

which path is being walked through when we use substitutivity.

The first important notion is that of homotopy. Traditionally, we take that two functions are the same

if they agree on all inputs. A homotopy between two functions is very close to that classical notion:

_~_ : {A : Set}{B : A→ Set}(f g : (x : A)→ B x)→ Set
f ~ g = ∀ x→ f x ≡ g x

It is worth mentioning that _˜_ is an equivalence relation, although we omit the proof. We follow by

defining an equivalence, which can be seen an encoding of the notion of isomorphism:

isequiv : {A B : Set}(f : A→ B)→ Set
isequiv f = ∃ (ń g→ ((f ◦ g) ~ id) × ((g ◦ f) ~ id))

That is, f is an equivalence if there exists a g such that g is a left and right-inverse of f .

Now we can state when two types are equivalent. For the reader familiar with algebra, it is not very far

from the usual isomorphism-based equivalence notion. As expected, univalence is also an equivalence

relation.

_≈_ : (A B : Set)→ Set
A ≈ B = ∃ (ń f→ isequiv f)

Following the common practice when encoding HoTT in Agda, we have to postulate the Univalence

axiom, which in short says that univalence and equivalence coincide:

postulate
≈-to-≡ : {A B : Set}→ (A ≈ B)→ A ≡ B

Now, our job becomes much easier, and it suffices to show that if two relations are mutually included,

then they are univalent.
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Mere Propositions

As we mentioned earlier, proof irrelevance is a desired property in most systems. In HoTT, one

distinguishes between mere propositions and other types, where mere propositions are defined by:

isProp : ∀{a}→ Set a→ Set a
isProp P = (p1 p2 : P)→ p1 ≡ p2

This allows us to state some very useful properties, which leads us to handle propositions as both true

or false, depending on whether or not they’re inhabited. These corresponds to lemma 3.3.2 in [29].

lemma-332 : {P : Set}→ isProp P→ (p0 : P)→ P ≈ Unit

¬lemma-332 : {P : Set}→ isProp P→ (P→⊥)→ P ≈ ⊥

Both are provable in Agda, but the proofs are omitted here.

Adding Relations to the mix

To exploit such fine treatment of equality in our favor, we need to add relation and a few other details

to the mix. The relation definition given before is kept, while pushing to the users the responsibility

of proving that their relations are both mere propositions and decidable.

This can be easily done with Agda’s instance mechanism:

record IsProp {A B : Set}(R : Rel A B) : Set where
constructor mp
field isprop : ∀ b a→ isProp (R b a)

record IsDec {A B : Set}(R : Rel A B) : Set where
constructor dec
field undec : Decidable R

open IsDec {{...}}
open IsProp {{...}}

This will treat both records as typeclasses in the Haskell sense. Now, for talking about subrelations

they must be an instance of IsProp, and whenever we wish to use anti-symmetry they must also be

an instance of IsDec. It turns out that anti-symmetry is now provable as long as we assume relational

extensionality.
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data _⊆_ {A B : Set}(R S : Rel A B) : Set where
⊆in : (∀ a b→ R b a→ S b a)→ R ⊆ S

⊆-antisym : {A B : Set}{R S : Rel A B}
{{ decr : IsDec R }} {{ decs : IsDec S }}
{{ pir : IsProp R }} {{ pis : IsProp S }}
→ R ⊆ S→ S ⊆ R→ R ≡ S

Although we could arrive at the result we desired with a minimal number of postulates (univalence

axiom, only), the user would be heavily punished when wanting to define a relation, not to say that

decidability would give problems once relational composition (discussed below) enters the stage. For

this reasons we chose not to adopt this solution as is, even though it is more formal than what we

previously presented.

Custom Universes

We could remove the IsProp record from our code should we give relations a bit more structure, and,

prove that every object in this new (more structured) world is a mere proposition. One good option

would be to encode a universe U of mere propositions and have relations defined as B → A → U.

This extra structure allows us to prove proof irrelevance for all u : U (which holds by construction,

once u is a mere proposition), but only lets one define relations over U, which is less expressive than

Set. The additional boilerplate code is also big, once we have to define a language and all operations

that we’ll need to perform with it. Our universe is defined as:

mutual
data U : Set where

TT : U
FF : U
_∧_ : U→ U→ U
¬_ : U→ U
_⇒_ : U→ U→ U
_∨_ : U→ U→ U
all : {A : U}→ (] A→ U)→ U
exs : {A : U}→ (] A→ U)→ U
_==_ : {A : U}(x y : ] A)→ U

With its interpretation back to Agda Sets being:
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{-# TERMINATING #-}
]_ : U→ Set
] TT = Unit
] FF = ⊥
] (p ∧ q) = ] p × ] q
] (¬ p) = ] p→⊥
] (p⇒ q) = ] p→ ] q
] (p ∨ q) = || ] p ] ] q ||
] all p = ∀ a→ ] p a
] exs {A} p = || ∃ (]_ ◦ p) ||
] (x == y) = x ≡ y

Notation || _ || denotes propositional truncation. That is, for every type A, there is a type || A || with

two constructors: (i) for any x : A we have | x |:|| A ||; (ii) for any x, y :|| A ||, we have x ≡ y.

This is also called smashing sometimes. Not every type constructor preserves mere propositions. A

simple example is the coproduct 1 + 1 itself. Even though 1 is a mere proposition, 1 + 1 is not, since

the elements of such type contain also information about which injection was used. Thus the need to

smash this information out if we want to keep with mere propositions.

It turns out that we are just defining the logic we will need to define relations, but this structure is very

helpful! Now we can prove that given u : U, ]u is a mere proposition.

uProp : (P : U)→ isProp (] P)

So far so good! We just removed one instance from the user and proving decidability becomes straight-

forward (but in a few, rare, complicated cases)! However, the changes were not only for the better. A

new, minor, problem is the verbosity introduced by U, since everything is harder to write and read.

But there is a more serious situation happening here. If we look at the existential quantifier defined in

U, its witnesses must also come from U. This can be very restrictive once we start using relational

composition (which is defined in terms of existentials).

The Equality Model

Given the options discussed above, with all their positive and negative aspects, it seems a little too

restrictive to adopt only one option. We indeed mixed both the ≡r promote with ⊆ -antisym. The

idea is that users not only can chose how formal they want their model to be, but this can significantly

increase development speed. In the first stages of development, where the base relations might change

a lot (and, if instances were written, they would consequently change), one can keep developing with

the ≡r promotion. Once this model is stable, it can be completely formalized by adding the desired

instances and using subrelation anti-symmetry.
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3.4 C O N S T RU C T I O N S

After establishing a model for relations and relational equality, we follow by presenting some of

the important constructions here. Note that contrary to pen and paper Mathematics, we provide an

encoding of the constructions and then we prove that our encoding satisfies the universal property for

the given construction, instead of adopting such property as the definition. This not only proves the

encoding to be correct, but it is the only constructive approach we can use.

The design adopted for the lower level constructions has a somewhat heavy notation. The main reason

for this choice (which differs significantly from other Relational Algebra implementations) is its ease

of use when coupled with reflection techniques. If we provide all definitions as Agda functions, when

we access a term AST, Agda will normalize and expand such definitions. By encapsulating it in

records, we can stop this normalization process and use a (much) smaller AST representation.

3.4.1 Composition

Given two relations R : B → C and S : A → B, we can construct a relation R · S : A → C, read as

R after S, and defined by:

R · S = {(a, c) ∈ A× C | ∃b ∈ B . a S b ∧ b R c}

Or, using diagrams:

A S //

R·S

77B R // C

As a first definition in Agda, one would expect something like:

_after_ : {A B C : Set}→ Rel B C→ Rel A B→ Rel A C
R after S = ń c a→ ∃ (ń b→ R c b × S b a)

And here we can start to see the dependent types shining. The existential quantification is just some

syntax sugar for a dependent product. Therefore, for constructing a composition we need to provide a

witness of type B and a proof that cRb ∧ bSa, given c and a.

Yet, this suffers from the problem mentioned earlier. Agda will normalize every occurrence of _after_
to its right-hand side, which is a non-linear lambda abstraction, and will make subterm matching very

complex to handle. An option is to use the exact definition of an existential quantifier, but expand it:
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record _•_ {A B C : Set}(R : Rel B C)(S : Rel A B)(c : C)(a : A) : Set
where

constructor _,_
field

witness : B
composes : (R c witness) × (S witness a)

Agda also provides an abstract keyword. An abstract definition is treated just like a postulate, but

with a proof. This is another way of forcing definitions to not expand or evaluate. It does not serve

our purpose, however. If we declare a relational construct using an abstract (or a postulate for that

matter) definition, Agda does not know how to introduce or eliminate it from terms and evaluation is

blocked.

The decidability of relational composition is complicated. Given R : Rel B C and S : Rel A B
decidable relations, for every a, c ∈ A× C we would like to be able to compute (R · S) c a ] ((R ·
S) c a → ⊥). But (R · S) c a holds if and only if there exists a b that witness the composition.

As we already know, there is only one way of proving an existential constructively: to construct the

quantified object. However, we have to assume no structure for B whatsoever. For an enumerable set

B, we could use some constraint solving technique, as in KodKod [28].

In some cases it is easy to compute such b : B. Take R · fun f for instance. Given a, we have no

choice but b = f a and this indeed solves the problem. In our library, we provided a quickfix for this

if the user can provide another relation when : Rel A C such that when c a is inhabited if and only if

the given relations composes (encoded by typeclass Composes). Although not the most general, it

allows one to give alternative formulations of relational composition, so Agda can use this alternative

formulations for computing decidability whereas it uses the normal composition for regular proofs.

This task deserves more time, which is why it was left as future work. If we could provide a class that

is sufficient to decide relational composition, we would be able to run almost every relation we use.

This is a non-trivial problem, however.

3.4.2 Products

Given two relations R : A → B and S : A → C, we can construct a relation 〈R, S〉 : A → B× C
such that (b, c) 〈R, S〉 a if and only if b R a ∧ c S a. Without getting in too much detail of what it

means to be a product, we usually write it in the form of a commutative diagram:
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B B× C
π1oo π2 // C

A

〈R,S〉

OO

R

bb

S

<<

That is,

R = π1 · 〈R, S〉

S = π2 · 〈R, S〉

Products are unique up to isomorphism, which explains the notation without introducing any new

names. The proof is fairly simple and can be conducted by gluing two product diagrams. The dia-

grammatic notation states the existence of a relation 〈R, S〉 and the dotted arrow states its uniqueness.

π1 (b, c) = b and π2 (b, c) = c are the canonical projections.

Definition 3.3 (Split Universal). Given R and S as above, let X : A→ B× C, then:

X ⊆ 〈R, S〉 ⇔ π1 · X ⊆ R ∧ π2 · X ⊆ S

Encoding this in Agda is fairly simple, once we already have products (in their categorical sense)

available. We just wrap everything inside a record:

record 〈_,_〉 {A B C : Set}(R : Rel A B)(S : Rel A C)(bc : B × C)(a : A) : Set
where constructor cons-〈,〉

field un : (R (proj1 bc) a) × (S (proj2 bc) a)

Its universal property can be derived from the following lemmas

prod-uni-r1 : ∀{A B C}→ {X : Rel C (A × B)}
→ (R : Rel C A)→ (S : Rel C B)
→ X ⊆ 〈 R , S 〉
→ π1 • X ⊆ R

prod-uni-r2 : ∀{A B C}→ {X : Rel C (A × B)}
→ (R : Rel C A)→ (S : Rel C B)
→ X ⊆ 〈 R , S 〉
→ π2 • X ⊆ S
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prod-uni-l : ∀{A B C}→ {X : Rel C (A × B)}
→ (R : Rel C A)→ (S : Rel C B)
→ (π1 • X) ⊆ R→ (π2 • X) ⊆ S
→ X ⊆ 〈 R , S 〉

In fact, the product of relations respects both decidability and propositionality (that is, given two mere

propositions, their product is still a mere proposition). Therefore, such instances are already defined.

3.4.3 Coproduct

If we flip every arrow in the diagram for products, we arrive at a dual notion, usually called coproduct

or sum. Given two relations R : B → A and S : C → A, we can perform a case analysis in an

element of type B + C and relate it to an A. Indeed, the either of R and S, denoted [R, S], has type

B + C → A and is depicted in the following diagram:

B
ι1 //

R ""

B + C

[R,S]
��

C
ι2oo

S||
A

In Agda, we have:

record either {A B C : Set}(R : Rel A C)(S : Rel B C)(c : C)(ab : A ] B) : Set
where constructor cons-either

field un : case (R c) (S c) ab

coprod-uni-r1 : ∀{A B C}{X : Rel (A ] B) C}
→ (R : Rel A C)→ (S : Rel B C)
→ (X ≡r either R S)
→ R ≡r X • Ì1

coprod-uni-r2 : ∀{A B C}{X : Rel (A ] B) C}
→ (R : Rel A C)→ (S : Rel B C)
→ (X ≡r either R S)
→ S ≡r X • Ì2

coprod-uni-l : ∀{A B C}{X : Rel (A ] B) C}
→ (R : Rel A C)→ (S : Rel B C)
→ (R ≡r X • Ì1)→ (S ≡r X • Ì2)
→ X ≡r either R S
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The coproduct has instances already defined for decidability and mere propositionality.

3.4.4 Relators and Catamorphisms

Our library already handles a nice portion of Relational Algebra but one of the most useful operations,

induction! Relational catamorphisms allows one to define relations by induction over some specified

structure.

Catamorphisms are defined as the least fixed points of certain recursion equations. Their dual are

Anamorphisms, which are defined as greatest fixed points. There recursion equations are modeled by

recursive functors (which must also be Relators, in the relational setting).

Definition 3.4 (Relator). Let F be a monotonic endofunctor in Rel. We say that F is a relator iff, if

R ⊆ S, then F R ⊆ F S.

It can be proved that relators also preserve converse, or, an even more interesting result: a functor is a

relator if and only if it preserves converses, theorem 5.1 in [6]. Unfortunately, in Agda things are not

so simple. The best option is to encode the relator laws as a type-class.

record IsRelator (F : Set→ Set→ Set) {{ p : IsWFunctor1 F }}
: Set1 where

field
fmap-id : ∀{B A}→ (Fr Id) ≡r Id

fmap-• : ∀{I A B C}{R : Rel B C}{S : Rel A B}
→ Fr (R • S) ≡r Fr R • Fr S

fmap-◦ : ∀{I A B}{R : Rel A B}
→ Fr (R ◦) ≡r (Fr R) ◦

fmap-⊆ : ∀{I A B}{R S : Rel A B}
→ R ⊆ S→ Fr R ⊆ Fr S

Yet, the purpose of this dissertation is not to explain Relators or Functors, but how to encode them in

Agda. Going one step at a time, let us look at the traditional definition of a catamorphism.

Categorically speaking, let F : C→ C be an endofunctor with initial algebra (µF, inF), then, for any

object B and F-algebra R : FB→ B the following diagram commutes.
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µF
in◦F --

(|R|)
��

F(µF)
inF

jj

F(|R|)
��

B FBRoo

Reading the universal depicted above, we have:

(|R|) ≡r R · F (|R|) · in◦F

Although it looks (and it indeed is) pretty tricky to encode this directly into Agda, at least it gives us

a type to follow. Since almost all useful functors are polymorphic, we will now denote F by FA, and

regard F as a functor with type D×C→ C.

We seek to define a relation (|R|) : µFA → B, given R : FAB → B, or, with Agda types, given a

B→ FAB→ Set, we need to build a B→ µFA → Set.

Shape and Positioning

The problem’s core lies in how to define a fixed point in Agda, which turns out to be very complicated,

if not impossible1. One solution is to look at a functor from a different angle. Playing around with the

List functor we arrive at:

FAX ∼= 1 + A× X
∼= 1× 1 + A× X
∼= 1× X⊥ + A× X1

The last step of the above derivation, were we transform 1 into X⊥, can not be proven in Agda.

However, it is evident to see it is a valid transformation from the initiality of ⊥.

It is important to note that the resulting term is an instance of a more general form:

TS,PX = Σ (s : S) (XP s)

For S = 1 + A and P = [const ⊥, const 1]. It can be proved that all polynomial functors can be

encoded in that fashion[2], where S represents a set of constructors of our datatype and P represents

1 With the help of Co-induction one can define fixed points, but this triggers some other problems when using such fixed
points. Not to mention the instability of the Co-induction module.
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the arity of each constructor. In the List example, nil = i1 unit has arity 0 and cons = i2 (x, _)
receives one recursive argument.

record IsWFunctor1 (F : Set→ Set→ Set) : Set1 where
field

S : Set→ Set
P : {A : Set}→ S A→ Set

inF : {A : Set}→ F A (W (S A) P)→W (S A) P
outF : {A : Set}→W (S A) P→ F A (W (S A) P)

Fr : {X A B : Set}→ Rel A B→ Rel (F X A) (F X B)

µF : Set→ Set
µF A = W (S A) P

inR : {A : Set}→ Rel (F A (µF A)) (µF A)
inR = fun inF

outR : {A : Set}→ Rel (µF A) (F A (µF A))
outR = fun outF

In the excerpt above we have a polymorphic shape S, this parameter only represents the type our

container is storing. For the sake of simplification we will forget about it. The set WSP is the set of all

well founded trees constructed by regarding each s : S as a constructor of arity P s. The first definition

of W-types is from [16].

data W (S : Set)(P : S→ Set) : Set where
sup : (s : S)→ (P s→W S P)→W S P

The important question being: are we talking about the same lists? And the answer is yes. Abbot et

al. did a lot of work on container types and encoding inductive types as W-types. The most relevant

result for us can be found in [2] and says that WSP coincide with the least fixed point of a functor

identified by S and P:

WSP ∼= µX . TS,PX

The elimination rule for W-types is
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W-rec : ∀{c}{S : Set}{P : S→ Set}
→ {C : W S P→ Set c}
→ (c : (s : S)
→ (f : P s→W S P)
→ (h : (p : P s)→ C (f p))
→ C (sup s f))

→ (x : W S P)→ C x
W-rec {C = C} c (sup s f) = c s f (W-rec {C = C} c ◦ f)

which gives out the generic induction principle for W-types. The dependent type setting, however,

allows one to tweak the conclusion C, depending on the WSP being folded. If we let C = A → Set,
quantified on A, we arrive at something very close to:

W-rec-rel : {S : Set}{P : S→ Set}{A : Set}
→ ((s : S)→ (p : P s→W S P)→ Rel (W S P) A→ A→ Set)
→ Rel (W S P) A

W-rec-rel h a w = W-rec (ń s p c→ h s p (W-rec-rel h) a) w

Where its parameter function h receives the shape and positioning of a list l (that is, the in◦ l), a

relation built recursively, and something of type A. The universal law can provide some interesting

intuition. It says that (|R|) is the same as opening up the list, checking if the recursive parts relate with

something, then relating the head and that something with R. That is exactly how we encode it:

W-cata-F : {A B : Set}{F : Set→ Set→ Set}{{ prf : IsWFunctor1 F }}
(R : Rel (F A B) B)→ Rel (µF A) B

W-cata-F {A} {B} {F} R = W-rec-rel (ń s p h n→ gene h n (sup s p))
where

gene : Rel (µF A) B→ Rel (µF A) B
gene h n l = (R • Fr h) n (outF l)

Now we just need to wrap it over a record to prevent evaluation, but looking at the type of W-cata-F,

it is already the type of a relational catamorphism. The final piece of the puzzle looks like:

record (|_|)1 {A B : Set}{F : Set→ Set→ Set}{{ prf : IsWFunctor1 F }}
(R : Rel (F A B) B)(b : B)(µFa : µF A) : Set
where constructor cons-cata

field un : W-cata-F R b µFa

Wrapping it up, in order to handle arbitrary2 functors the idea is to: (a) encode it using W-types;

(b) Use a custom elimination rule, derivable from the standard W-elimination and (c) translate the

relational gene using the cata universal. A small problem with this technique is the need to explicitly

2 Not at all that arbitrary, we can just handle strictly positive inductive types, of which the polynomial functors are part of.
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prove the cata universal for every functor we wish to use. One way of bypassing this would be to

postulate it. Since we mainly need the universal for rewriting purposes, no actual computation needs

to be performed.

Proving the universal law for a specific functor is straight-forward. Nevertheless, we adopted the

postulate strategy to ease the development. Remember that in the relational case, the universal law is

split in two separate laws:

postulate
cata-uni-1 : {A B : Set}{F : Set→ Set→ Set}

{{ pF : IsWFunctor1 F }}{{ pR : IsRelator F }}
{R : Rel (F A B) B}{X : Rel (µF A) B}

→ X ⊆ R • Fr X • outR
→ X ⊆ (| R |)1

cata-uni-2 : {A B : Set}{F : Set→ Set→ Set}
{{ pF : IsWFunctor1 F }}{{ pR : IsRelator F }}
{R : Rel (F A B) B}{X : Rel (µF A) B}

→ R • Fr X • outR ⊆ X
→ (| R |)1 ⊆ X

As far as the author is aware, this is an original attempt at encoding generic catamorphisms in Agda.

The List relator has already been handled in [21], yet we were looking forward to give a generic

framework. Although theoretically sound, the implementation does not work as intended. Whenever

we were working on proof objects involving catamorphisms Agda delivered a bunch of stack overflows

and internal error messages, not to mention the very poor run time, which significantly slowed down

development. Nevertheless, we are happy that it is possible to encode those generic functors. Fine

tuning the implementation is left as future work.

3.4.5 Properties

Besides the main relational constructions, we developed a selection of property-specific modules.

Given the amount of properties we have in relational algebra, we had to somehow categorize them.

Modules are divided in the kind of property they provide. The naming scheme is straight forward:

names start with a hyphen separated list of relevant operators, followed by the property name. If

we are looking for · + · and (·)◦ distributivity, for instance, its name is going to be +-◦-distr. An

additional identification: -l, -r, 1 or 2; might be found appended to the property name, indicating

either the direction (left or right) or the part of the conclusion being extracted. One example is the

split universal, section 3.4.2. A simple taxonomy of modules is provided below.
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1. Group like properties, such as: neutral elements, absorption, inverse and associativity.

2. Monotonicity over _ ⊆ _.

3. Idempotence of operators.

4. BiFunctoriality for product and coproduct.

5. Correflexive specific properties.

6. Galois connections present in Relational Algebra, which provide distributivity over _ ∩ _ and

_∪ _, cancellation and more monotonicity.

3.5 T H E L I B R A RY

The constructions and workarounds explained above do not constitute a full description of the library.

There are still modules for equational reasoning and a few more constructs implemented. All the code

is available in the following GitHub repository:

https://github.com/VictorCMiraldo/msc-agda-tactics/tree/master/Agda/

Rel

It is compliant with Agda’s version 2.4.2.2; standard library version 0.9.

3.5.1 Summary

This chapter discussed, somewhat high level, the implementation and problems we found during the

development of our Relational Algebra library. Even though some features might seem very complex,

it is the price we have to pay in exchange for the expressiveness of dependent types.

The problem imposed by Agda’s (intensional) equality is that it implies convertibility. As seen in this

chapter, we don’t really care about convertibility of relations. They need to be inhabited at the same

time, though. Borrowing some notions from Homotopy Type Theory[29] in order to hardcode a proof

irrelevance notion was very helpful, besides the complex layer of boilerplate code for the end-user.

The later option, postulating some axioms that allows one to trick Agda’s equality, revealed itself to

be cleaner and to provide both a better interface and a completely formal approach, when needed.

Another complicated solution was the use of W-types to encode generic (polynomial) functors, with

their respective catamorphism. Although some mechanical code had to be pushed to the user we

finished with an interface very close to what one would write on paper, which closes the features we

were looking forward to have.
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4

T E R M S A N D R E W R I T I N G

Rewriting can be looked upon from a lot of different angles. Nevertheless, a very general approach

is already largely used in logic: substitutivity of predicates. If we want to discuss the validity of an

arbitrary statement, lets take 0 ≤ 32 ≤ 10, for instance. We can substitute sub-statements by equal

sub-statements. In our case, 32 = 9, which renders the final proposition to be 0 ≤ 9 ≤ 10. That is

obviously true. In a more formal manner, let P be a predicate over a set S and s1, s2 ∈ S, if P s1 holds

and s1 ≡ s2, then, obviously P s2 holds. This notion is called substitutivity.

Whenever we work with pen-and-paper mathematics, it is common to structure our thoughts in a

series of equivalent statements. To our luck, Agda also has a very interesting customization feature

called equational reasoning, which we will explore in this chapter. Yet, no matter when one performs

a rewrite on paper, substitutivity rarely comes to mind. Mostly because it is purely mechanical, and

one believes that such things are evident. We seek to make those steps evident to Agda, and recreate

a validated pen-and-paper environment.

Agda introduced a reflection API in version 2.2.8. Although not a new feature in the world of func-

tional programming (Lisp’s quoting and unquoting and Template Haskell, for instance, are similar

techniques) it is proving to be very useful for implementing interesting things. One application for re-

flection, which we chose to explore, is the possibility to write custom tactics for proving propositions.

Somewhat close to how Coq proves propositions.

The representation of an Agda term has type Term, and can be obtained by quoting it. The keywords

that bridge the world of programs and their abstract representations are quoteTerm and unquote,

inverses of each other. The former transforms a normal term into it’s Term representation whereas

the later does exactly the opposite. Due to Agda’s complexity, however, the type Term is difficult to

handle. A much simpler option is to use a intermediate representation, which we called RTerm, for

implementing the required operations.

After a simpler representation was figured out, we continued by implementing several RTerm oper-

ations. From these operations we could provide an interesting tactic, named by. Whenever the user
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calls (tactic (by action)), we will get information about the goal and action at that point and try to

derive the solution, as long as there exists a strategy that can handle the goal action pair.

This chapter starts by giving a brief introduction to Agda’s Equational Reasoning framework, in sec-

tion 4.1. Following with Agda’s Term datatype and some of the reflection API, in section 4.2. On the

sequence, section 4.3, we give a description of our RTerm representation and explain how we perform

the conversion. A presentation of the operations required for automatic congruence and substitution

guessing follows in section 4.4. We finish this chapter in section 4.5 where we explain the library

entry-point function: the by function. Some guidance for when one wants to use our rewrite feature

in different domains is also given.

The majority of the code is omitted from this chapter in order to improve readability. We stress that

the project is publicly available at the author’s GitHub repository.

4.1 E Q UAT I O N A L R E A S O N I N G

The possibility of defining mixfix operators makes Agda a very customizable language. This is, in-

deed, used very often to build domain specific languages on top of Agda itself, which gives a very

convenient way of proving results.

By taking a look at a piece of squiggol, from a type-theoretic angle, one can identify a few components.

As an example, let us take a proof of the shunting property, from [6], and look at its syntax.

f · R ⊆ S

⇐ { f is simple }

f · R ⊆ f · f ◦ · S

⇐ { monotonicity2 }

R ⊆ f ◦ · S

⇐ { f is entire } (1)

f ◦ · f · R ⊆ f ◦ · S

⇐ { monotonicity1 } (2)

f · R ⊆ S

The first thing that pops up is the implication, ⇐, which is not part of the relational calculus being

developed in the subject of the demonstration. The justifications, however, must have type en+1 ⇐ en.

Well, implication in Agda is just the arrow type, as for functions, rendering the type of the justifications
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to be en → en+1. Since we have loads of justifications, it makes sense to associate them to some side.

By assuming they are right-associative we arrive at a ternary mixfix operator _ ⇐ {_}_. Transitivity

and reflexivity of the underlying operation, in our case⇐, closes the box.

However, Agda already supports an even more generic approach to equational reasoning. All we need

is a preorder relation _ ∼ _ with a subjacent equivalence relation _ ≈ _. Below we present the kinds

of relational reasoning supported.

R

≡r 〈lemma1〉

S

R

⊆ 〈lemma2〉

S

R ⊆ S

⇐ 〈lemma3〉

R′ ⊆ S′

Where the above lemmas must have type R ≡r S, R ⊆ S and R′ ⊆ S′ → R ⊆ S respectively. The

context of equational reasoning is a good starting point to build some intuition about rewriting.

The reader might have noticed a small problem in the above explanation of equational reasoning, in

contrast with the shunting proof given as an example. Not every justification in the proof have the

same type, as we claimed above. Looking at step 2, with type ∀ R S T . R ⊆ S→ C · R ⊆ C · S, and

step 1, with type id ⊆ f ◦ · f . Our rewrite framework does exactly that job, of adjusting the lemmas

that do not fit.

4.2 R E F L E C T I O N I N AG DA

As of version 2.4.8, Agda’s reflection API provides a few keywords displayed in table 3. This feature

can the thought of as the Template Haskell approach in Agda, or, meta programming in Agda.

The idea is to access the abstract representation of a term, during compile time, perform computations

over it and return the resulting term before resuming compilation. We will not delve into much detail

on Agda’s abstract representation. The interested reader should go to Paul van der Walt’s thesis[30],

where, although somewhat outdated, Paul gives a in-depth explanation of reflection in Agda. However,

the following excerpt gives a taste of how reflection looks like.

example : quoteTerm (ń x→ suc x) ≡ con (quote suc) []
example = refl

Although very small, it states that the abstract representation of suc is a constructor, whose name is

suc and has no arguments whatsoever. The Term datatype, exported from the Reflection module, has

a large number of constructors and options. We are just interested in a small subset of such terms,
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which is enough motive to build our own term datatype. That is the reason why we will not explain

reflection in depth. Nevertheless, the next section provides a discussion on our interface to reflection.

Another interesting factor is to note how Agda normalizes a term before quoting it. Note how it

performed a η-reduction automatically. To prevent this is the reason why we need all those record
boilerplate in our Relational Algebra library.

quote Returns a Name datatype, representing the quoted identifier.

quoteTerm Takes a term, normalizes it and returns it’s Term inhabitant.

quoteGoal g in f Brings a quoted version of the goal in place into f ’s scope, namely, g.

quoteContext Returns a list of quoted types. This is the ordered list of
types of the local variables from where the function was called.

tactic f Is syntax-sugar for quoteGoal g in ( f quoteContext g).

Table 3: Agda 2.4.8 Reflection API

4.3 R E P R E S E N T I N G T E R M S

Before some confusion arises it is important to explain that we can not tackle rewriting in a standard

fashion, like arbitrary term rewriting systems might do. Our problem is, in fact, slightly different.

Given two structurally different terms and an action, we want to see: (A) if it is possible to apply

such action in such a way that (B) it justifies the rewriting step. The first step is a simple matter of

unification, which will be discussed later. However, the second part, justifying the rewrite, boils down

to the generation of a subst that explains to Agda that what we are doing is valid. Our main goal here

is to generate such subst.

The best way to explain how we implemented the by tactic is to work out a few examples by hand.

This should provide the justification of some design decisions and give a tutorial on how to extend our

framework.

We are going to focus on two scenarios. The first one is a simple associativity proof for list concate-

nation. Whereas the second is a relational proof of a trivial lemma.

50



4.3. Representing Terms

++-assoc : ∀{a}{A : Set a}(xs ys zs : List A)
→ (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)

++-assoc [] ys zs = refl
++-assoc (x :: xs) ys zs = {! !}0

R⊆R•Id : {A B : Set}(R : Rel A B)
→ (R ⊆ R • Id)⇐ Unit

R⊆R•Id R
= begin

R ⊆ R • Id
⇐〈 {! !}1 〉

R ⊆ R
⇐〈 (ń _→⊆-refl) 〉

Unit
�

One could fill in the holes manually, with the terms presented in table 4. Our task is to generate such

terms automatically from the information supplied by Agda: the goal type and context list1; together

with the action given by the user (identified by orange text in table 4).

Hole 0 = cong (_::_ x) (++-assoc xs ys zs)
Hole 1 = subst (λ x → R ⊆ x) (≡r-promote (•-id-r R))

Table 4: Solutions for holes 1 and 2

It is already easy to see how different relations will take different solutions. For hole one, a congruence

suffices, since we’re dealing with propositional equality and a data constructor (which is always a

congruence). Hole two, on the other hand, needs a partially applied subst. And this will be the

case whenever we’re handling relational equality inside our squiggol environment. For the time being,

however, let us forget about this detail. Indeed, let us explore the simpler example first.

Figure 1 gives the notation we are going to use to identify subterms in the given goal and action. We

will denote the first goal by (hd1, g1, g2) and a given action A by (hda, a1, a2). Inside the library,

this is represented by a RBinApp, which forces all terms that we propose to handle to have a binary

relation on their heads.

Goal (x :: xs ++ ys) ++ zs︸ ︷︷ ︸
g1

hdg
≡ x :: xs ++ (ys ++zs)︸ ︷︷ ︸

g2

Action (xs ++ ys) ++ zs︸ ︷︷ ︸
a1

hda≡ xs ++ (ys ++zs)︸ ︷︷ ︸
a2

Figure 1: Goal and Action for hole zero

An interesting observation is that if we take only the common subterms g1 and g2, we could obtain

something like:

g� = g1 ∩ g2 = (x :: � ++ �)

1 A context list is a list of types, in the same order as the De Bruijn indexes of the function parameters
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Which is very close to the abstraction we are looking forward to derive. Yet, a congruence receives a

unary function and our intersection is yielding a term with two holes. This behavior is actually correct,

both g1 and g2 have a concatenation below _ :: _ x. This is easily fixed with a simple convention. We

define a hole lifting operation where definitions whose arguments are all holes become a single hole.

In the end, we arrive at:

g� = g1 ∩ g2 = (x :: � ++ �)
li f t→ (x :: �)

This small intuition not only gives a simple decidable algorithm for deriving the abstraction from the

goal type alone, but also gives some clues on how to represent terms. The term representation one

is looking for has to support holes, or, behave as a zipper structure. So far we need a parametric

simplification of Agda’s Term. The representation we chose is:

data RTermName : Set where
rcon : Name→ RTermName
rdef : Name→ RTermName
impl : RTermName

data RTerm {a}(A : Set a) : Set a where
ovar : (x : A)→ RTerm A
ivar : (n : N)→ RTerm A
rlit : (l : Literal)→ RTerm A
rlam : RTerm A→ RTerm A
rapp : (n : RTermName)(ts : List (RTerm A))→ RTerm A

Where RTermName distinguishes from definitions, constructors and function types. Such distinction

is important once we need to convert these back to Agda’s Term before unquoting. The RTerm
functor is very straight-forward for a Haskell programmer. What might pass by unnoticed is how

much more expressiveness one gets from a parametric type such as RTerm in Agda. The translation

of an Agda term into a RTerm actually returns a RTerm ⊥, from which we can prove that there are

no ovar occurrences (the actual object of type RTerm ⊥ is the proof).

It is also valid to ask why did we chose to add two constructors for representing variables. A specific,

simple constructor, ivar, and a more general one, ovar. The reasons are manifold. Besides the usual

excuse that a polymorphic type provides more expressiveness, we stress the importance of being able

to differentiate important variables from the rest. Some algorithms also require more complicated

types, rather than N, for indexes.

Indeed, one important operation we can perform on RTems is the lifting of ivars to ovars, defined

below.
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lift-ivar : RTerm ⊥→ RTerm N

lift-ivar = lift-ivar’ 0
where

lift-ivar’ : N→ RTerm ⊥→ RTerm N

lift-ivar’ _ (ovar ())
lift-ivar’ d (ivar n) with d ≤? n
...| yes _ = ovar n
...| no _ = ivar n
lift-ivar’ _ (rlit l) = rlit l
lift-ivar’ d (rlam t) = rlam (lift-ivar’ (suc d) t)
lift-ivar’ d (rapp n ts) = rapp n (map (lift-ivar’ d) ts)

Unfortunately, we can not simply substitute all ivar constructor by ovar. We could be shadowing vari-

ables by performing this operation carelessly. Another reason for adding a polymorphic constructor

to our RTerm type will become clear in the types of the term operations we are going to declare. We

will not provide the full source-code for them to improve readability.

The central operation is the intersection of two RTerms. It is used to find out where the differences

are, and, therefore, providing the context for applying congruences or substitutions later.

_∩_ : ∀{A} {[ eqA : Eq A ]}
→ RTerm A→ RTerm A→ RTerm (Maybe A)

Where a just is used to keep equal ovars and a nothing represents a hole, or, a difference in the

arguments. Note that some representations are exactly the same. After getting a intersection term,

with type RTerm (Maybe ⊥), we actually cast it to RTerm Unit. They are isomorphic. One could

argue that the intersection type could be made simpler, but it wouldn’t be as generic as we wanted our

operations to be.

Having defined an intersection, which works somewhat as a term road map. It makes sense to be able

to fetch the differences in two terms, or, in a term and a road map:

_-_ : ∀{A} {[ eqA : Eq A ]}
→ RTerm (Maybe A)→ RTerm A→ Maybe (List (RTerm A))

Which takes two terms, one with holes and a regular one, and if they match, return a list of subterms

from it’s second argument that overlap the holes in the first one. As an example:

(x :: �)− (x :: (xs ++ ys) ++ zs) = just ((xs ++ ys) ++ zs :: [])

(x :: �)− ((xs ++ ys) ++ zs) = nothing

(x :: �++�)− (x :: (xs ++ ys) ++ zs) = just (xs ++ ys :: zs :: [])
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From the intersection and difference operators we ca already extract a lot of information to complete

our goal. The general algorithm is given in figure 2

1. Given the goal (hdg, g1, g2) and action type (hda, a1, a2), we start by calculating the abstraction

g� = ↑ (g1 ∩ g2)

where ↑ _ represents hole-lifting.

2. We proceed by separating the parts of the goal which still need to be handled, they are, for
i ∈ {1, 2}, ui = g�− gi.

3. Instantiation of u1 with a1 and u2 with a2 follows, this should give two substitutions σ1 and σ2.

4. Afterwards, it’s just a matter of converting all this data back to a term. σ = σ1 ++σ2 will
contain the list of arguments we should pass to our action function.

Figure 2: Converting a RWData to a UData

The last step, of converting everything back to Agda’s Term type, should be modular. A simple

idea is to use different strategies triggered by specific (hdg, hda) pairs. This should give us enough

freedom to use our library even on very particular scenarios. Remembering, though, that the specific

constructors of a given case study should be deeply embedded into, at least, a record. Otherwise,

normalization is going to render terms incompatible. We are going to discuss this topic later.

4.3.1 Complexity Remarks

Since we do not provide the full code here, it is also out of scope to give a detailed complexity analysis.

For the interested reader, the code is annotated with such analysis. In this section we will present only

a few results where our reasoning is always in a worst-case setting. Two important measures over

RTerms have to be introduced, that is, the size of a term and the set of free variables of a term:

S : {A : Set}→ RTerm A→N

S (ovar _) = 1
S (ivar _) = 1
S (rlit _) = 1
S (rlam t) = 1 + S t
S (rapp n ts) = 1 + sum (map S ts)

where open import Data.List using (sum)

Fv : {A : Set}→ RTerm A→ List A
Fv (ovar a) = a :: []
Fv (ivar _) = []
Fv (rlit _) = []
Fv (rlam t) = Fv t
Fv (rapp _ ts) = concatMap Fv ts

where open import Data.List using (concatMap)

Given a t ∈ RTermA, for all A, St denotes (S t) and # Fvt denotes length(Fv t).
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Term intersection t1 ∩ t2 was found to run in O(min(St, Su)). Same thing goes for lifting after

intersection, _∩ ↑ _. An ideal version of term subtraction t − u will run in O(#Fvt), the same

reasoning applies to _− ↓ _. Instantiation, inst t, which is discussed in the next section, given that t
has at most n free variables, will run in O(n2 + (St + 1)× n + St).

Note that we chose to leave the complexities dependent both on the size of the term and on the number

of free variables. This is because more often than not we will have terms with 2 or 3 free variables,

with a size of 10 to 15. It is therefore wrong to prune out either parameter from our analysis.

Our unification strategy, displayed in figure 2, lets call it basic, when called as basic (g1 ≡g g2) (t1 ≡t

t2), in the worst case, runs in, approximately,O(2t(t+ S+ 1)+ 2S) time, for t = max(#Fvt1 , #Fvt2)

and S = max(St1 , St2).

This shows that the action structure plays a bigger role than the goal itself, for the run time of our

tactic. Such result was somewhat expected, since instantiation has a quadratic run time on its first

parameter’s ovars.

4.4 I N S TA N T I AT I O N

Until now, we know how to extract a congruence (if possible) from the goal type only. Nevertheless,

we have more information to use. The action type namely. From it, we should be able to extract

the parameters we need to apply automatically. Let us take a look at the second example for this

illustration, that is, hole 1 in table 4.

Lemma •-id-r receives a relation R and returns a proof of R ≡r R • Id. Abstracting over variable

names and adopting their De Bruijn index instead we get a tree, similar to figure 3. Whereas, perform-

ing the steps described in the previous section for the goal in question will result in g� = R ⊆ �,

u1 = g� − g1 = R and u2 = g� − g2 = R · Id.

≡r
a1

~~

a2

��
0 ·

�� ��
0 Id

Figure 3: •-id-r’s type

Comparing u1 with a1 and u2 with a2 should

give the intuition that, if the variable indexed by

0 is instantiated to R, the types match. In fact,

R is the solution. Long story short, we need to

obtain two agreeing substitutions σ1 and σ2 such

that σi ai = ui, for i ∈ {1, 2}. Such problem

is known as instantiation. We heavily based our-

selves in [27], with a few modifications to handle

both implicit parameters and our more expres-

sive term language. These adjustments will be discussed below, together with a more formal approach

to the problem.
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Before going any further with instantiation, we need to comply with Agda’s termination checker. A

neat way of doing so is to resort to RTerms indexed by a finite number of elements.

FinTerm : N→ Set
FinTerm = RTerm ◦ Fin

Given an action with n visible, that is, not implicit, variables, we therefore will need to instantiate all

n of its parameters to be able to obtain the desired result. However, the order in which we find their

instances might not be the usual natural number ordering. We therefore rely on a partial substitution

datatype defined by a vector where each position i contains either a closed term, meaning that the

i-th De Bruijn variable of our action should be instantiated to that closed term or a symbolical value

representing that we did not find an instance for such variable.

X : N→ Set
X = Vec (Maybe (RTerm ⊥))

The empty substitution is easily defined by recursion on the number of elements we wish to instantiate.

empty-X : {n : N}→ X n
empty-X {zero} = []
empty-X {suc n} = nothing :: empty-X

A few simple operations are also needed before going further:

lookup-X : {n : N}→ Fin n→ X n→ Maybe (RTerm ⊥)
lookup-X fz (x :: _) = x
lookup-X (fs i) (_ :: s) = lookup-X i s

{-# TERMINATING #-}
apply-X : {n : N}→ X n→ FinTerm n→ Maybe (RTerm ⊥)
apply-X s (ovar x) = lookup-X x s
apply-X s (ivar n) = just (ivar n)
apply-X s (rlit l) = just (rlit l)
apply-X s (rlam t) = rlam <$> apply-X s t
apply-X s (rapp n ts) = rapp n <$> mapM (apply-X s) ts

Where _<$>_ is the same as in Haskell’s Control.Applicative, and mapM is the lifting of map to the

Maybe monad. The apply-X function is straight forward. An important note, however, is that we just

substitute ovars. This distinction between out variables and in variables is more important than what

initially meets the eye.
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Relaxing the syntax to improve readability, we can say that the general form of an Agda type is

composed of n implicit parameters, k explicit parameters and a, possibly dependent, conclusion.

aux : {i1}{i2} · · · {in} → (e1)(e2) · · · (ek)→ C i1 · · · in e1 · · · ek

Therefore we have a total of n + k parameters. Yet, whenever we need the conclusion from aux we

just need to provide k arguments, since the first n implicit parameters are going to be figured out by

Agda. It follows that our instantiation algorithm only needs to figure out k parameters. Rewriting the

above type with De Bruijn indices we have:

aux : {n + k− 1}{n + k− 2} · · · {k} → (k− 1)(k− 2) · · · (0)→ C (n + k− 1) · · · 0

We are not really concerned with all the implicit parameters anyway. If they can not be guessed by

Agda, an error will happen at unquoting. We proceed to model the variables we need to instantiate as

an ovar, whereas the other ones become a ivar. The instantiation algorithm is given below.

mutual
instAcc : {n : N}→ FinTerm n→ RTerm ⊥→ X n→ Maybe (X n)
instAcc (ovar x) t s = extend-X x t s
instAcc (ivar _) _ s = just s

instAcc (rlit l) (rlit k) s with l ?
=-Lit k

...| yes _ = just s

...| no _ = nothing
instAcc (rlam t) (rlam u) s = instAcc t u s

instAcc (rapp n ts) (rapp m us) s with n ?
=-RTermName m

...| no _ = nothing

...| yes _ = instAcc* ts us s
instAcc _ _ _ = nothing

instAcc* : {n : N}→ List (FinTerm n)→ List (RTerm ⊥)→ X n→ Maybe (X n)
instAcc* [] [] s = just s
instAcc* [] (_ :: _) _ = nothing
instAcc* (_ :: _) [] _ = nothing
instAcc* (x :: xs) (y :: ys) s = instAcc x y s »= instAcc* xs ys

inst : {n : N}→ FinTerm n→ RTerm ⊥→ Maybe (X n)
inst t u = instAcc t u empty-X

The inst function receives one term with n ovars and a closed term. It returns a partial substitution for

n variables and it works by calling an auxiliary version with a substitution as its state. Notice how an
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ivar does not change the substitution and is simply accepted, whereas an ovar triggers an extension,

which will be discussed later.

The return type being a Maybe (X n) has a somewhat confusing interpretation. If instantiation returns

nothing, it means that the terms have an incompatible structure. On the other hand, if it returns a just
σ there are two possible cases. Either σ is complete or not. In the former situation, everything is fine

and we have just figured out our parameters. The later scenario means that we did not have enough

information to instantiate every variable yet. Nevertheless, given two partial substitutions we might

be able to build a complete one, as long as they agree on the variables defined on both and there is no

variable undefined on both. Substitution concatenation is given by _++x_.

_++x_ : {n : N}→ X n→ X n→ Maybe (X n)
[] ++x [] = just []
(x :: xs) ++x (y :: ys) with x | y
...| nothing | just y’ = _::_ y <$> (xs ++x ys)
...| just x’ | nothing = _::_ x <$> (xs ++x ys)
...| nothing | nothing = nothing

...| just x’ | just y’ with x’ ?
=-RTerm y’

...| no _ = nothing

...| yes _ = _::_ x <$> (xs ++x ys)

The extension of a substitution σ for n = t is a simple traverse to the desired position, n, and, if

such variable was not yet figured we simply return t. If it was already defined to a t′, after all, then

they must agree, that is, t = t′. This requirement preserves the injectivity of the substitution being

computed.

extend-X : {n : N}→ Fin n→ RTerm ⊥→ X n→ Maybe (X n)
extend-X fz t (nothing :: s) = just (just t :: s)

extend-X fz t (just t′ :: s) with t ?
=-RTerm t′

...| yes _ = just (just t :: s)

...| no _ = nothing
extend-X (fs i) t (mt :: s) = _::_ mt <$> extend-X i t s

Representing terms abstractly, operations defined on such representation and the instantiation algo-

rithm are all the pieces we need to figure out abstractions and parameters to actions. In the next

section we are going to discuss how do they fit together and how the users can extend the library to

suit their needs.
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4.5 T H E by TAC T I C

Computing a term that allows a rewrite, which is our main task here, is divided in three parts. First

we extract data from the goal and action type. We make sure that these terms have the expected form

and satisfy the requirements imposed on them. The dependent type setting allows us to encode such

requirements at the type-level. This data is called RWData.

record RWData : Set where
constructor rw-data
field

goal : RBinApp ⊥
actN : N

act : RBinApp (Fin actN)
ctx : List (RTerm ⊥)

Note how we can be sure that both the goal is a closed binary application and the action has the correct

number of variables to be instantiated, since actN represents the action arity. The context is unused so

far, but since it is given by the tactic keyword we decided to keep it there. To compute such structure

one calls:

make-RWData : Name→ AgTerm→ List (Arg AgType)→ Err StratErr RWData
make-RWData act goal ctx

with η (Ag2RTerm goal) | Ag2RTypeFin (type act) | map (Ag2RType ◦ unarg) ctx
...| g’ | tyN , ty | ctx’ with forceBinary g’ | forceBinary (typeResult ty)
...| just g | just a = return (rw-data g tyN a ctx’)
...| _ | _ = throwError (Custom "...")

where Ag2RTypeFin is defined by:

Ag2RTypeFin : AgType→ ∃ FinTerm
Ag2RTypeFin = R2FinType ◦ lift-ivar ◦ η ◦ Ag2RType

Which means that we first translate a type normally, for which we get a RTerm ⊥, then we lift all

ivars there to ovars. R2FinType finishes up by converting the variables n such that n ≤ actN to

a finite representation and downgrades other variables back to ivars. This gives a term that can be

passed directly to instantiation without further processing. Note the η-reduction being forced upon

the terms before instantiation. This is due to relations being of type A → B → Set, and, sometimes,

Agda will add superfluous abstractions during normalization.

59



4.5. The by tactic

Having computed a RWData, we need to extract the congruence (resp. substitution) and the parame-

ters, if any, to give to the action. That is, we are now going to compute some unification data out of a

RWData.

record UData : Set where
constructor u-data
field

� : RTerm Unit
σ : RSubst
trs : List Trs

Which is composed of a single-hole abstraction, named �. A substitution for the action parameters,

translated to a list of N×RTerm ⊥ for easier handling and a list of transformations to be applied. Let

us postpone this last detail a bit longer. Section 4.3 gives a description of how to compute � and what

to instantiate with what afterwards. These could be summarized by the following unification strategy.

basic : RWData→ Err StratErr UData
basic (rw-data (hdx , g1 , g2) tn (hda , ty1 , ty2) _ )

= let g� = g1 ∩↑ g2
u1 = (g� -↓ g1) »= (inst ty1)
u2 = (g� -↓ g2) »= (inst ty2)
σ = µ ((_++x_ <$> u1) <*> u2)

in maybe (ń s→ i2 (u-data (⊥2UnitCast g�) s [])) (i1 NoUnification)
(σ »= X2RSubst)

Some housekeeping functions are present to make sure we perform the correct conversions. Neverthe-

less, the statements inside the let block correspond to the description given in section 4.3. It is evident

that wrapping everything in an Error monad makes programming much easier. Not only that, but it

also allow us to compose strategies in a neat fashion:

runUStrats : RWData→ Err StratErr UData
runUStrats = basic <|> basic-sym

Where basic-sym is the same as basic, but instantiates the first part of the goal with the second

parameter of the action and vice-versa. If such instantiation yields a substitution, we add symmetry to

the list of transformations to be applied. In fact, it is the only transformation we support so far. The

alternative operator has the same Haskell semantics for the Error monad.

If we are able to compute a UData successfully, the last step is to convert all that information back

into a term. This is where customization can take place.
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record TStrat : Set where
field

when : RTermName→ RTermName→ Bool
how : Name→ UData→ Err StratErr (RTerm ⊥)

TStratDB : Set
TStratDB = List TStrat

The when field is a predicate over the goal relation name and the action relation name, in that order,

which specifies when how should be applied. Whereas how receives the action name and unification

data and should generate a closed term to close the goal in question.

As a simple example, the TStrat for handling propositional equality is shown below.

module PropEq where

pattern pat-≡ = (rdef (quote _≡_))

private
open UData

≡-when : RTermName→ RTermName→ Bool
≡-when pat-≡ pat-≡ = true
≡-when _ _ = false

fixTrs : Trs→ RTerm ⊥→ RTerm ⊥
fixTrs Symmetry term = rapp (rdef (quote sym)) (term :: [])

≡-how : Name→ UData→ Err StratErr (RTerm ⊥)
≡-how act (u-data g� σ trs)

= i2 (rapp (rdef (quote cong))
( hole2Abs g�
:: foldr fixTrs (makeApp act σ) trs
:: [])

)

≡-strat : TStrat
≡-strat = record

{ when = ≡-when
; how = ≡-how
}
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4.5.1 Interfacing

One interesting feature of Agda is the possibility of providing module parameters. Importing the

rewrite module requires a term strategy database:

module RW (db : TStratDB) where

Not only this makes the code very modular, but also allows one to use different strategies for the same

relations, if the need arise.

Finally we have been through all the ingredients we need to build our automatic rewrite tactic. It

comes in two flavors. The first one returns a bunch of information useful for debugging whereas the

later is intended to be used for production.

by’ : Name→ List (Arg AgType)→ AgTerm→ (RWData × UData × RTerm ⊥)
by’ act ctx goal with runErr (make-RWData act goal ctx »= RWerr act)
...| i1 err = RW-error err
...| i2 term = term

by : Name→ List (Arg AgType)→ AgTerm→ AgTerm
by act ctx goal = R2AgTerm ◦ p2 ◦ p2 $ (by’ act ctx goal)

Using the by tactic should be straight-forward. Just import the desired term strategy, pass it as a

parameter to the RW module and it will be good to go. The overhead introduced by our tactic at

compile time is very acceptable.

4.5.2 Closing Remarks

This chapter presented the construction of a meta-programming tool to help mathematicians with

mechanical steps in the development process they usually face. Agda proved to be a tool with enough

strength for that task. In fact, a very interesting detail is how we can use Agda itself, to generate Agda

programs. This contrasts with most proof assistants that provide custom tactics. Coq, for instance,

has three different languages for creating customized tactics.

We reiterate that, although this chapter does not display the full source code of our tactic, the tactic is

available on GitHub for the community to test, fork and modify! The repository can be found at the

following url.

https://github.com/VictorCMiraldo/agda-rw
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5

VA R I AT I O N S O F T H E B Y TAC T I C

Chapter 4 discussed the construction of a tactic that handles one goal, given one action. What if we

tried to generalize this? The best case scenario would be the handling a number of goals and actions

at the same time, maintaining a linear time complexity. That is a very hard achievement! Such tool

would be a completely automatic theorem prover. By compiling all theorems and lemmas of a given

theory in Agda and ask for proofs, such ideal tool would return the proof objects regardless of the

theorem to be proved.

It is plausible, however, to try to handle either multiple goals, with given actions or to find the correct

action, given multiple actions, to solve one goal. These possible extensions to the library are the object

of discussion of this chapter. Sections 5.1 and 5.2 explore those options, respectively.

5.1 M U LT I P L E G O A L S

Given a transitive rewrite relation, we can, at least, specify how one would compute the intermediate

goals. The implementation, however, is somewhat complex. The biggest problem, which is the size of

the search space, does not have an easy workaround. Nevertheless, some contexts have an acceptable

run time.

Lets imagine we want to prove an exchange law for natural numbers and sum, something in the line

of:

exch : (x y : N)→ x + y ≡ y + (x + 0)

Since that sum is commutative and associative, this should be pretty straight forward given such

lemmas.

+-comm : ∀ m n→ m + n ≡ n + m
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+-id : ∀ n→ n + 0 ≡ n

One possible implementation for exch could be:

exch x y = trans (+-comm x y) (cong (ń w→ y + w) (sym (+-id x)))

Which is a good place to start. We are looking forward to derive something close the above right-hand-

side term. The two arguments for trans can already be derived using the by tactic. Unfortunately, we

need a concrete goal to call by, otherwise we can not infer the context (abstraction) where the rewrite

happens.

The term intersection we defined in the previous chapter is of no use here, since in general, rewrites do

not happen in independent subterms. One option is to simply substitute, according to +-comm’s type,

one occurrence of a + b for b + a in g1 = x + y, repeating the procedure for +-id. The possibilities

are displayed in figure 4

(y + 0) + x

x + y comm // y + x

id
99

id //

id

%%

y + (x + 0)

(y + x) + 0

Figure 4: Substitution outcomes

Note that if we apply first +-id, the amount of

possibilities increases drastically.

The implementation uses the List monad to

model non-deterministic computations. The

core idea is modeled by the following three func-

tions. For the more curious reader, we reiterate

that the complete code is available online.

As we already mentioned, the ability to non-

deterministically perform a single substitution in

a term is central. Given a term g and a pair of terms m, n, g[m, n] will return a term with one occur-

rence of m substituted by n.

_[_] : {A : Set}{{eqA : Eq A}}→ RTerm A→ RTerm A × RTerm A→ NonDet (RTerm A)

Note how the type of _[_] requires all terms involved to have the same parameter A, also remember

that in the previous section we modeled actions with n explicit parameters as FinTermn. Yet, our

goal have type RTerm⊥. This type mismatch captures the instantiation problem, depicted in figure 4.

In fact, we need to chose parameters from our goal to feed the given action, and only then substitute.

{-# TERMINATING #-}
apply : {n : N}→ RTerm ⊥→ RBinApp (Fin n)→ NonDet (RTerm ⊥)

The function apply g t, for t : FinTerm n, is computed by induction in n. When n = 0 it means

our action have no more free variables and we can substitute g[t1, t2]. When n = k + 1, however,
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apply will non-deterministically instantiate the last parameter, transforming t to t’ : FinTerm k, and

call itself recursively. The finite type workaround does not fully work to prove termination, which

have to still be explicitly mentioned here.

We finish off with a function that will select, from all the chains produced with _[_] and apply, those

that start and finish with the correct terms.

divideGoal : RBinApp ⊥→ List (Σ N (RBinApp ◦ Fin))→ Maybe (List (RTerm ⊥))

After dividing our goal into a list of intermediate terms, it is just a matter of applying the tactic to every

single one of them and combining everything with a suitable transitivity function. It is important to

note that there are two different explosions of our search space here. The number of actions we want

to apply in a row will determine how tall our tree will grow, whereas a bigger number of parameters

of the actions itself will result in a wider tree, that is, more bifurcations at our nodes.

Our approach here is very naive. The apply function will search every possible instantiation of a given

action’s parameters. We could rule out those that do not typecheck, for instance. This also motivates

an addition to Agda’s reflection API. A function with type AgTerm→ AgTerm→ Bool that returns

true when its first argument has its second argument as a possible type. Such optimization would

reduce the search space, unfortunately not in a significant manner. Using heuristics could also be an

interesting optimization.

5.2 M U LT I P L E AC T I O N S : A B E T T E R S E A R C H I N G A L G O R I T H M

The handling of multiple actions for the same goal would bring us closer to what auto or tauto do in

Coq. We could have whole theories compiled in some sort of database and let our tool figure out which

of those lemmas to apply. Since the goal is fixed, there should be one solution. A naive extension to

our library could be made:

by+ : List Name→ List (Arg AgType)→ AgTerm→ AgTerm
by+ [] _ _ = RW-error "No suitable action"

by+ (a :: as) ctx goal with runErr (make-RWData a goal ctx »= RWerr a)
...| i1 _ = by+ as ctx goal
...| i2 t = R2AgTerm ◦ p2 ◦ p2 $ t

However, a List of names is a bad data structure to use here. We can see that by borrowing a few

definitions from the complexity of our by tactic, section 4.3.1. Without loss of generality, let us

assume that we are going to search a list of n tactics. Let us assume that a given action t maximizes

the function 2× #Fvt(#Fvt + St + 1) + 2St. Our by+ tactic will belong toO(n× (2× #Fvt(#Fvt +

St + 1) + 2St)), for we might need to search every other n− 1 actions before finding the correct one.
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Is it possible, however, to rule out actions purely based on their structure? Indeed, we are going to

explore an alternative data structure to speed up search and get instantiation for free, during lookup.

This section starts with a summarized explanation of Tries and then follows with our generalization of

the same concept. The structure we arrive at is a type-indexed data structure, in the sense of [13]. Yet,

our lookup and insertion methods have to be significantly different since we have to handle variables,

that can be arbitrarily instantiated.

5.2.1 Tries

There a few variations on of a Trie, suited for different applications. We will, however, restrict our-

selves to the original definition, which is also the simplest. This small digression has the purpose of

introducing the underlying idea without too many technicalities.

ε

t

te

tentea

a n

to

total

tal

o e

t

Figure 5: Trie example

Figure 5 shows a trie that stores the string set S =

{”t”, ”to”, ”tot”, ”tota”, ”total”, ”te”, ”tea”, ”ten”}. A few impor-

tant notions to note are that, even though it has a tree structure, the

keys are not associated with a specific node, but with its position-

ing in the trie. In the end of the day, we can look at Tries as finite

deterministic acyclic automatons.

The specification of a Trie is fairly simple. Taking already a small

step towards a generalization and assuming that instead of storing

lists of characters (strings) we are going to store arbitrary lists, the

Trie functor is given by:

T a k = µX.(k + 1)× (a→ X + 1)

So, each node contains a possible key and a partial map from a’s to Tries. The retrieval of the key

associated with a list l is performed by recursion on l. When we reach the empty list we return the

(k + 1) part of the current node. Otherwise, we try to traverse the trie associated with the current node

partial map applied to the head of the list.

Insertion is also very straight forward. Inserting a key k indexed by a list l, assuming l does not

belong in the trie, yet, consists of a walk in the trie, by induction l, adding entries to the partial maps,

if needed, until we reach the empty list, and then register k at that node.

The biggest limitation of a Trie, however, is that it can only be indexed by a linear data-structure, such

as a list. R. Hinze, J. Jeuring and A. Löh provides a solution to that, in [13], by defining a special
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kind of Tries that can be indexed by arbitrary data-types. The idea, in a nutshell, is to work with the

algebraic representation of the indexes (data-types) and have nested maps at every node. This is a bit

too general for our needs here. We are looking for a structure that can be indexed by a given term

language, which follows the typical sum-of-products form. An additional complication arises when

we start to allow variables in the index.

5.2.2 Towards a Generalization

Following the popular saying – A picture is worth a thousand words – let us begin with a simple

representation. Just like a trie, our RTrie trie was designed to store names of actions to be performed,

indexed by their respective type. Figure 7 shows the RTrie that stores the actions from figure 6. For

clarity, we have written the De Bruijn indexes of the respective variables as a superscript on their

names.

x0 + 0 ≡ x0

x0 + y1 ≡ y1 + x0

x2 + (y1 + z0) ≡ (x2 + y1) + z0

Figure 6: Identity, Commutativity and Associativity for addition.

k2 ` COMM
0

l4 ` ASSOC
1

l3 ` l4
2

++

k1 ` k2

1

++

r2 ` RI
0

l2 ` l3
0

l1 ` l2
1

++

r1 ` k1

1
r1 ` r2

0
l1
2

r1

0

++

≡≡

Figure 7: RTrie for terms of figure 6. Yellow and green circles represent DeBruijn indexes and literals, respec-
tively.

Let us illustrate the lookup of, for instance, (2× x) + 0 ≡ 2× x. The search starts by searching in

the root’s partial map for ≡. We’re given two tries! Since ≡?1 is a binary constructor. We proceed by
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looking for (2× x) + 0 in the left child of ≡. Well, our topmost operator is now a +?2 , we repeat the

same idea and now, look for (2× x) in the left child of the left +. Here, we can choose to instantiate

variable 0 as (2× x) and collect label r1 or instantiate variable 2, with the same term, and collect

label l1. Since we cannot know beforehand which variable to instantiate, we instantiate both! At this

point, the state of our lookup is (0 7→ 2 × x, r1) ∨ (2 7→ 2 × x, l1). We proceed to look for the

literal 0 in the right trie of +?2 , taking us to a leaf node with a rewrite rule stating r1 ` r2. This reads

r1 should be rewritten by r2. We apply this to all states we have so far. Those that are not labeled

r1 are pruned. However, we could also instantiate variable 1 at that node, so we add a new state

(0 7→ 2× x, 1 7→ 0, k1). At this step, our state becomes (0 7→ 2× x, r2) ∨ (0 7→ 2× x, 1 7→ 0, k1).

We go up one level and find that now, we should look for 2× x at the right child of ≡?1 . We cannot

traverse the right child labeled with a +, leaving us with to compare the instantiation gathered for

variable 0 in the left-hand-side of ≡?1 to 2× x. They are indeed the same, which allows us to apply

the rule r2 ` RI. Which concludes the search, rewriting label r2 by RI, or, any other code for +-
right-identity. By returning not only the final label, but also the environment gathered, we get the

instantiation for variables for free. The result of such search should be (0 7→ 2× x, RI) :: [].

This small worked example already provides a few insights not only on how to code lookup, but also

on how to define our RTrie. We have faced two kinds of nodes. Fork nodes, which are composed by

a list of cells, and, Leaf nodes, which contain a list of (rewrite) rules. Indeed, we define RTrie by:

data Rule : Set where
Gr : N → Rule
Tr : N→N→ Rule
Fr : N→ Name→ Rule

mutual
Cell : Set
Cell = IdxMap.to RTrie default
× List (N × List Rule)

data RTrie : Set where
Fork : List Cell→ RTrie
Leaf : List Rule→ RTrie

Rewrite rules are divided in three different kinds: Gather, Transition and Final rules. The type to
comes from RW.Data.PMap X IsEqX, and represents a partial map from X to some other type. The

default modifier adds a default value to the map, making it possible to totalize it.

The idea is to separate the binding symbols from the non-binding ones. The second component of the

Cell product correspond to these binding symbols. We used a list to be able to easily map over it. The

IdxMap.to on the other hand, is used to store non-binding indexes, where the default value of such
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map will give us free rules to apply when nothing else can be done. They act in a similar way as just

accepting ivars, like we did with the instantiation algorithm, in section 4.3.

5.2.3 Polymorphic vs. Monomorphic

In a first attempt to encode our RTrie in Agda, we went generic, polymorphic. Type variable t is the

index type and c is the conclusion type, which we are being indexed by different elements t1, · · · tn :
t. The assumption we make, however, states that t must have a IsTrie instance. Such record is defined

by:

record IsTrie (t : Set) : Set1 where
field

Idx : Set
idx≡ : Eq Idx

toSym : Idx→ Maybe N

fromSym : N → Maybe Idx

int : Idx × (List t)→ t
outt : t→ Idx × (List t)

Stating that for a given t, there exists an index type Idx, with a decidable underlying equality. We

must be able to at least differentiate between different indexes, after all. We also state the we must be

able to open and close such term. It is easy to prove that for each sum-of-products recursive type, we

can construct a type Idx satisfying these properties. Just ignore the recursive arguments and make a

label for each constructor.

This generic approach works reasonably well for simple cases. In our scenario, however, we need

more control on the lookup and insertion functions. This topic will be explained further in the follow-

ing sections. Nevertheless, we have the indexes for RTerm datatype defined by:

data RTermi {a}(A : Set a) : Set a where
ovari : (x : A)→ RTermi A
ivari : (n : N)→ RTermi A
rliti : (l : Literal)→ RTermi A
rlami : RTermi A
rappi : (n : RTermName)→ RTermi A

One interesting part, however, is the toSym function. These Symbols are the binding symbols. We

are stating that some of our indexes are in fact binding symbols, therefore we need a way to both dis-
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tinguish between binding and non-binding indexes, and convert to a standard representation. DeBruijn

indexes were adopted as this representation.

out : ∀{a}{A : Set a}→ RTerm A→ RTermi A × List (RTerm A)
out (ovar x) = ovari x , []
out (ivar n) = ivari n , []
out (rlit l) = rliti l , []
out (rlam t) = rlami , t :: []
out (rapp n ts) = rappi n , ts

toSymbol : ∀{a}{A : Set a}→ RTermi A→ Maybe A
toSymbol (ovari a) = just a
toSymbol _ = nothing

idx-cast : ∀{a b}{A : Set a}{B : Set b}
→ (i : RTermi A)→ (toSymbol i ≡ nothing)
→ RTermi B

idx-cast (ovari x) ()
idx-cast (ivari n) _ = ivari n
idx-cast (rliti l) _ = rliti l
idx-cast (rlami ) _ = rlami

idx-cast (rappi n) _ = rappi n

Note that whenever an index is not a symbol, we can cast it to arbitrary types. This will be very

important if we want to maintain the type of the interface, in the sense that we only return closed

instantiations, or, maps from N to RTerm ⊥.

5.2.4 Lookup

Looking up a term in a RTrie, as we stated in the example given in the beginning of this section, will

involve a fair amount of components. Here, we will just give the outline of the algorithm. The details

can be checked directly in the source code. The same will happen with insertion.

Most of the lookup functionality will happen inside a reader monad, that is, the partially applied

function type: (r →), for some r. In our case, we will read list of configurations, representing the

disjunctions used in the example. Henceforth, we have

L : Set→ Set
L = Reader (List Lst)
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where Lst represents a single state, or, an instantiation with a possible label representing the last path

we took on the RTrie. In Agda:

Label : Set
Label = N ] Name

Lst : Set
Lst = Nmap.to (RTerm ⊥) × Maybe Label

Retrieving a term from a RTrie relies mostly on the rewrite rules. The ruleList function will try the

application of a list of rules to all states it receives. If we cannot apply a rule, we prune that state out

of the search.

ruleList : List Rule→ L (List Lst)

The main component is the following function, with its smaller helper function types presented below.

lkup-aux : RTerm ⊥→ RTrie→ L (List Lst)
lkup-aux _ (Leaf r) = ruleList r
lkup-aux k (Fork (((d , rs) , bs) :: []))

= let tid , tr = out k
in lkup-inst k bs
»= ń r→ maybe (lkup≡just tr) (lkup-aux k d) (IdxMap.lkup tid rs)
»= return ◦ (_++_ r)
where

lkup≡just : List (RTerm ⊥)→ RTrie→ L (List Lst)
lkup≡just [] (Leaf r) = ruleList r
lkup≡just _ (Leaf _) = return []
lkup≡just tr (Fork ms) = lkup-list (zip tr ms)

lkup-list : List (RTerm ⊥ × Cell)→ L (List Lst)

lkup-inst : RTerm ⊥→ List (N × List Rule)→ L (List Lst)

Spelling out the definition, we can see that looking something up in a Leaf is just a simple application

of the rules in that leaf. The term itself does not matter, since even if we can extract an index out of it,

we have nowhere to traverse next. Retrieving data from a Fork with one cell is a bit trickier, though.

We can either instantiate some variables and proceed, or lookup the term index to find out which

subtree to traverse. If we do not find any, we look something up in the default branch. This default

branch is useful for simulating the behavior instantiation had with ivars, of accepting ivars without

checking anything. We return the concatenation of the configurations produced by instantiation and

recursion.
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Instantiation deserves a more in-depth discussion. Given a state lst and, a cell with possible instantia-

tions bs : List (N×List Rule), and a term t. We can choose to instantiate one b ∈ bs at a given time.

We will end up with a list of states map (instantiate lst) bs, representing the disjunction of possible

instantiation choices we have at the moment. Now, lets fix a b ∈ bs and explore the instantiate
function. If b is unbound in lst yet, we simply add an entry b 7→ t and apply the rules associated

with such binding. If b is already instantiated to lst(b), we need to check whether or not everything

is right. If lst(b) ≡ t, we can apply the rules and continue. Otherwise, we discard such state since it

is carrying an inconsistent instantiation.

5.2.5 Insertion

Inserting a new key in an already existing RTrie is not too different from insertion in a regular trie. Lets

say we want to insert term t, with out t ≡ (tid, tr), in a cell ((de f , midx), msym), where (de f , midx)

is the total map from indexes to RTries and msym is the list of possible bindings at this node. Now,

everything depends on what tid turns out to be. Case tid is:

1. rliti l; which implies tr ≡ [], and it means that we are going to either add a Leaf node in our

midx map, or append rules to an existing midx(rliti l).

2. rlami; with tr ≡ [t′]. Just like the above case, we are going to traverse midx. Lets assume

midx(rlami) = r (if rlami /∈ dom(midx), we simply add a rlami 7→ RTrieEmpty), we proceed

by inserting t′ in r.

3. rappi n; in this situation tr might be an arbitrary list of terms. Assuming midx(rappi n) =

Fork l, we proceed by inserting each tr in their respective cell in l. Or, map(uncurry insert)(zip tr l).

4. ovari x; we found a binding symbol! We need to modify msym here. We simply construct a new

rule and either add or append it to msym(n), depending on whether or not msym(n) was already

defined.

5. ivari x; we will change the default value of our index map. This means that we are going to

ignore ivari, just like we did with instantiation, in our first approach. The modification applied

to d is to simply add a new rule to it.

The implementation revolves around a state monad, carrying a label and a counter to generate new

rules. That is considered housekeeping and we will skip through it.

I : ∀{a}→ Set a→ Set a
I {a} = STa {lz} {a} (Σ N (ń _→ Maybe N))
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Steps 1 to 5 have a interesting similarity. They all traverse the trie and, some of them, must perform

changes after the recursive step has been completed. This is very close to what a zipper does, and can

be achieved with one.

CellCtx : Set _
CellCtx = RTrie→ Cell

Let us define a functionM that given a Cell and an index i, will traverse the cell following i’s direction,

just like described above. The return value, however, is a pair containing a RTrie to be traversed by

the caller for the recursive case and a context, to reconstruct the cell with the given RTrie.

M : {A : Set}{{enA : Enum A}}
→ Cell→ RTermi A→ I (CellCtx × RTrie)

M {{enum aN _}} c tid with toSymbol tid | inspect toSymbol tid
...| nothing | [ prf ] = mIdx c (idx-cast tid prf)
...| just s | _ = maybe (mSym c) enum-err (aN s)

where postulate enum-err : I (CellCtx × RTrie)

We divide it in two other functions. Either we are handling a binding symbol or a simple index.

mIdx : Cell→ RTermi ⊥
→ I (CellCtx × RTrie)

mIdx ((d , mh) , bs) (ivari _)
= return $ (ń bt→ (merge d bt , mh) , bs) , BTrieEmpty
where

merge : RTrie→ RTrie→ RTrie
merge (Leaf as) (Leaf bs) = Leaf (as ++ bs)
merge _ bt = bt

mIdx ((d , mh) , bs) tid
= let mh′ , prf = IdxMap.alterPrf BTrieEmpty tid mh
in return $ (ń f→ (d , IdxMap.insert tid f mh) , bs)

, (IdxMap.lkup’ tid mh′ prf)

mSym : Cell→N

→ I (CellCtx × RTrie)
mSym (mh , bs) tsym with Nmap.lkup tsym bs
...| nothing = makeRule

»= ń r→ return (const (mh , (tsym , r :: []) :: bs)
, BTrieEmpty)

...| just rs = handleRules rs
»= ń r→ return (const (mh , Nmap.insert tsym r bs)

, BTrieEmpty)
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If we are handling a binding symbol, then it is obvious we do not have any recursive argument to take

care of. Note how mSym returns a constant context and the empty RTrie. When we handle indexes,

however, note how we just change the default value of the index map in case we find an ivari.

Our life becomes much easier now. Imagine we need to insert an opened term (tid, tr) in a Cell c. Well,

by callingM c tid we are going to get a context ctx and a RTrie rt to insert our tr into. Assuming

this insertion results in an RTrie rt′, we just need to reconstruct our current cell with ctx rt′.

Indeed, the main insertion function is defined by

{-# TERMINATING #-}
insCell : {A : Set}{{enA : Enum A}}
→ RTermi A × List (RTerm A)→ Cell→ I Cell

insCell (tid , tr) cell
=M cell tid
»= ń { (c , bt)→ insCellAux tid tr bt »= return ◦ c }
where

tr≡[] : {A : Set}{{enA : Enum A}}
→ RTermi A→ I RTrie

tr≡[] tid with toSymbol tid
...| nothing = (Leaf ◦ singleton) <$> makeRule
...| _ = return $ Fork []

insCellAux : {A : Set}{{enA : Enum A}}
→ RTermi A→ List (RTerm A)→ RTrie
→ I RTrie

insCellAux tid _ (Leaf r) = return (Leaf r)
insCellAux tid [] _ = tr≡[] tid
insCellAux tid tr (Fork [])

= Fork <$> insCell*E tr
insCellAux tid tr (Fork ms)

= Fork <$> insCell* tr ms

Afterwards, it is just a matter of running the monad and providing a cleaner interface. After we

finished inserting the term we traverse the tree again substituting the last used label by the name we

want to store.

Insertion has poor performance, mostly due to the reconstruction needed at every step. A good

idea is to trick Agda into normalizing the trie that represents an action database using unquote and

quoteTerm. Quoting forces normalization, which will make Agda compile it to its normal form in

the agdai file. This technique ensures that we only create the database once.
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5.2.6 The auto tactic

Equipped with our RTries, we are ready to handle multiple actions in a manner far better than what

we did with lists. We can also reuse a big portion of the library and, for instance, make the lookup

actually return a Name × UData object. Making it possible to use the same user created term

strategies, discussed in section 4.5, to reconstruct the Agda term filling the goal.

search-action : RTermName→ RBinApp ⊥→ RTrie→ List (Name × UData)
search-action hd (_ , g1 , g2) trie

= let g� = g1 ∩↑ g2

u1 = g� -↓ g1

u2 = g� -↓ g2

ul = replicateM (u1 :: u2 :: [])
in maybe (mkSearch g�) (ul-is-nothing :: []) ul

Note how we can not just look up the goal term. We need to find out where the changes are, just like

we did with the by tactic, and construct a term using these differences and a RTermName to use as a

new head.

The final tactic is provided inside a sub module of RW.RW, where we can abstract over the RTrie being

used as a database and a function for modifying RTermNames.

module Auto
(bt : RTrie)
(newHd : RTermName→ RTermName)

where

The importance of newHd is not evident. When computing terms with the by tactic, we have both the

goal and the action head (that is, the topmost operator of both terms), which allow us to choose which

strategy to apply, if any. Using the auto tactic, however, we need to find an action to apply to our goal.

Let g� be the context inferred from our goal and u1 and u2 the subtraction of g� from the goal. We

will search for an action with type rapp (newHd ghd) (u1 :: u2 :: []). The tactic is defined as

follows.

auto : List (Arg AgType)→ AgTerm→ AgTerm
auto ctx goal with runErr (auto-internal ctx goal)
...| i1 err = RW-error err
...| i2 r = r
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auto-internal : List (Arg AgType)→ AgTerm→ Err StratErr AgTerm
auto-internal _ goal with forceBinary $ Ag2RTerm goal
...| nothing = i1 $ Custom "non-binary goal"

...| just (hd , g1 , g2)
= let

options = search-action (newHd hd) (hd , g1 , g2) bt
strat = uncurry $ our-strategy hd
err = Custom "No option was succesful"

in try-all strat err options »= return ◦ R2AgTerm

This abstraction over which relation to use given the topmost goal relation opens up a few interesting

possibilities for future work. Let’s assume that newHd had the following, more complex type:

RTermName→ List (RTermName× (Maybe RTerm ⊥))

Satisfying something property close to: ∀(n, m) ∈ newHd ghd, if m ≡ just t for some term t, then t
has type n→ ghd. This is roughly the introduction of a lattice of convertible relations, with ghd being

the minimal. If we imagine our goal head was _ ≤ _, we could start by searching actions which had

the same head, if that did not work, we could start looking for actions whose head is _ ≡ _. Although

simple in its core, this idea has a few not so straight-forward details for the goal context g� must also

be taken into account. For this reason we left this loose end open, to be tied in the future.

5.2.7 Summary

Although a more formal complexity analysis is needed to provide a sound conclusion as to how much

time do we save by encoding our term database as a Trie, it is straight forward to have an intuition to

how it performs better, at the very least on spacial complexity, compared to a list-based implementa-

tion. A Haskell prototype was developed prior to the Agda code. Needless to mention, such prototype

performed much better and could handle a very large number of terms, even for a real theory. The

biggest problem, in Agda, is the insertion function. Trying to make a database with 30 terms, running

Agda with RTS options: -K64M -M2.5G -s, results in the output presented in figure 8. That is, we

need more than 2.5 gigabytes of heap space to finish the computation.

This behavior was somewhat expected, since the insertion algorithm needs to keep reconstructing the

tree as it progresses. It is worth remembering that the RTerms corresponding to the lemmas are not

as small as one might imagine. For instance, consider the distributivity of converse over coproducts,

that is:
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+-◦-distr : {A B C D : Set}{R : Rel A B}{S : Rel C D}
→ (R ◦ + S ◦) ≡r (R + S) ◦

When translated to its corresponding meta-language representation, we have the following RTerm.

+-◦-distr-size : S (Ag2RType (type (quote +-◦-distr))) ≡ 22
+-◦-distr-size = refl

One solution to this performance problem is to perform all processing in Haskell. We would need two

additional keywords on Agda. One to add a given function to the internal term database and one to

run the corresponding auto tactic with the persistent term database. Is it really a good idea to push

reflection computations to Haskell instead of fixing the Agda side, though? This is a complicated

question to answer and we will leave this paragraph as a thought digression only, since Agda is still a

young tool.

Current maximum heap size is 2684354560 bytes (2560 MB);
use ‘+RTS -M<size>’ to increase it.

43,764,717,080 bytes allocated in the heap
19,527,437,072 bytes copied during GC
2,643,217,856 bytes maximum residency (40 sample(s))

10,944,000 bytes maximum slop
2637 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 74987 colls, 0 par 31.79s 31.83s 0.0004s 0.0033s
Gen 1 40 colls, 0 par 393.98s 407.71s 10.1929s 27.7731s

INIT time 0.00s ( 0.00s elapsed)
MUT time 191.16s (192.32s elapsed)
GC time 425.78s (439.54s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 616.94s (631.86s elapsed)

%GC time 69.0% (69.6% elapsed)

Alloc rate 228,946,026 bytes per MUT second

Productivity 31.0% of total user, 30.3% of total elapsed

Figure 8: RTS dump for Rel.Properties.Database.
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C O N C L U S I O N S A N D F U T U R E W O R K

The overall task of adding rewriting functionality to Agda is quite an exploratory project for a couple

reasons, the most relevant being the unstable state of Agda’s standard library and, in particular, of

the Reflection module. One workaround is to define our own Term datatype, and, whenever Agda

changes its reflection module, we just need to fix the two conversion functions. One of the biggest

difficulties we found is the steep learning curve of Agda’s standard library.

Our goal was not only adding automatic rewriting to Agda, but to explore how closely to pen-and-

paper we could model Relational Algebra in Agda. Disconsidering generic catamorphisms, the result

is very satisfactory. Agda runs in an acceptable time and allows us to build some homework level

proofs. When things got interesting though, that is, when we added (generic) catamorphisms to the

recipe, Agda did not behave that well. We encountered several performance problems and internal

error messages. The code still works and is able to (poorly) handle generic catamorphisms. From

what we know, this is the first attempt at encoding relational generic catamorphisms in Agda. It

is interesting to know that it is, indeed, possible to develop an encoding using W-types. Yet, work

remains to be done in refining and fixing this approach. On this same note, the authors can not help

but wish Agda provided more control or information over evaluation (type checking). Some sort of

profiling, for instance, would really help developers.

On another interesting digression, we did fix the relational equality problem, in Agda, by using a few

concepts from Homotopy Type Theory. Our fix still relies on one axiom, the Univalence Axiom. It is

arguable, however, on how much of that was indeed necessary, since by assuming function extension-

ality one could already complete the proofs. Nevertheless, we do believe it is very good practice to

keep postulates to an absolute minimum. They not only block evaluation but can lead to inconsisten-

cies if not carefully analyzed. It is also worth noting that our library had special specifications in mind,

when it was designed. Such as being suitable for automated processing. This constraint rendered a

library with much more code overhead to give us finer control over evaluation.

We would like to reiterate that the Relational Algebra library we constructed is by no means final.

A proper organization of the already provided properties, which do not encompass a full account of
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Relational Algebra, is definitely needed. Bootstrapping the proofs with our rewriting engine would

be also very interesting, even though not all proofs can be bootstrapped. A more detailed work on

the decidability of relational composition could also be important for making catamorphisms usable

in practice.

In parallel with the development of the aforementioned library, on a more practical front, we developed

a few tactics for automated context inference on equational reasoning proofs. That is, we are able

to infer the substitutions that justify the rewriting operation automatically. During a first iteration,

the tactic was pretty straight forward and, once we figured out the necessary RTerm operations, its

implementation was relatively simple. Generalizing it was a more complicated task. We did develop

a data structure that seems to perform better than lists to handle multiple possible actions, yet, the

construction of such object in Agda posed a performance problem, which we did not have time to

overcome and was left as future work. Here again, a few debugging tools from Agda itself could have

been of great help.

Long story short, however, our contributions were twofold. On one hand, a library pushing the limits

of the Agda language, on another, a helpful automatic rewrite functionality. Although Agda is still a

young tool, it has incredible potential. The unified language for programming and meta-programming,

indeed, makes it possible to automate almost every mechanical task in a very natural way. From the

tools available to us, it is evident that we are at the beginning of a new era for software verification

and formal methods.
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