
Experimenting with Predicate Abstraction

Victor Cacciari Miraldo, Maria João Frade, Cláudio Lourenço, and
Jorge Sousa Pinto

HASLab/INESC TEC & Universidade do Minho, Portugal

Abstract. Predicate abstraction is a technique employed in software
model checking to produce abstract models that can be conservatively
checked for property violations in reasonable time. The precision degree
of different abstractions of the same program may differ based on (i) the
set of predicates used; or (ii) the algorithmic technique employed to gen-
erate the model. In this paper we explain how we have implemented and
optimized one such technique, that produces the most precise existential
abstraction of a program, and give the first steps towards establishing
a common framework for both this direct technique and a second one,
based on cartesian abstraction by weakest precondition calculations.

1 Introduction

Model Checking [7] has been successful in validating hardware system designs,
to a point where its use has become not only common, but essential. It has long
been hoped that this success will carry over to the realm of software, but this
has proved exceptionally difficult, due to an aggravated state-space explosion
problem. This is of course a typical problem of model checking, but the partic-
ular characteristics of software systems (like the presence of datatypes) make it
particularly hard to handle.

Two main families of techniques have been employed in the last 10 to 15 years
to make software model checking useful in practice. The first is bounded model
checking [5], which in fact is not a specific technique for software applications.
In a nutshell, it is employed as an alternative to BDD-based symbolic model
checking that limits the exploration of executions of a system to a given bound
on their length: paths longer than this bound are simply not explored. When
applied to software, this amounts to limiting the number of loop iterations and
recursive calls considered. Bounded model-checking problems can be encoded as
logical satisfiability problems, solved with the help of a satisfiability solver. The
drawback of this technique is that in general when a safety property is valid
in the bounded model (e.g. a given error state is unreachable), it cannot be
guaranteed to be valid in the original program.

The alternative is to consider an abstract model of the program, which may
dramatically reduce the state-space. The goal of abstraction is to compute an
abstract model M̄ from the concrete model M of a program, such that the size
of the state-space is reduced, but in a way that it is still sound to check for safety
properties. Abstraction [10] is of course the fundamental technique that makes

102

static program analyses feasible; the kind of abstraction used for software model
checking safety properties is known as existential abstraction [8]. Informally,
existential abstraction produces an abstract model M̄ from a contrete model
M of a program so that any reachability problem that is solvable in M is also
solvable in M̄ , which means that if the abstract model satisfies a given safety
property, then so does the original program (i.e. concretization preserves safety).

This paper is about a specific existential abstraction technique known as
Predicate Abstraction [13], which has the advantage over other abstraction meth-
ods that it can be computed algorithmically. Predicate abstraction keeps track
of a given set E of predicates over the data, and registers how the truth value of
these predicates changes with the concrete program steps. Computing a predi-
cate abstraction of a program inherently takes exponential time on its length;
but predicate abstractions are not unique, and there exist different approaches
to computing them, with the usual trade-off between precision and efficiency.

In any working software model checker predicate abstraction is implemented
as part of a refinement loop. In Counter Example-Guided Abstract Refinement
(CEGAR), the refinement that is performed at each iteration consists of adding
more predicates to E. The loop successively calculates predicate abstractions,
starting from a rougher model, and refines them by generating new predicates,
based on the false positive counter-examples returned by the model checker at
each stage, until no counter-example is returned (in which case the program is
safe) or a true counter-example is found (the program is unsafe, there exists a
real property violation). Abstract refinement is not covered in the present paper:
we focus on predicate abstraction using a fixed set of predicates, which is the
fundamental (and costly!) building block of any software model checker.

Although the literature on software model checking accumulated over these
last 15 years is vast, we found that no clear and uniform presentation of the
different approaches to predicate abstraction can be found. In this paper we
take two such approaches, each of which has been proposed as part of a major
software model checker. We remark that the precision degree of two predicate
abstractions of the same program may differ based on (i) the set E of predicates
provided (using more predicates results in a more precise model); or (ii) the al-
gorithmic technique used to generate the model from E. Given a set E, the two
methods considered here differ in the degree of precision of the generated ab-
stract models. The first method is the one found in the MAGIC software model
checker developed at CMU [6]; it is a straightforward technique that focuses
on directly computing minimal existential abstractions by solving SAT prob-
lems. The second method (more efficient but less precise) is based on cartesian
abstraction; it can be found at the core of the Microsoft SLAM tool [2].

The two methods are unfortunately described in the literature in terms that
make them hard to compare or to implement based on the same backbone:
whereas the direct method works at the level of transition systems, the second
method produces a Boolean program (so different model checking tools have to be
used on the abstract models produced). In addition, cartesian abstraction is im-
plemented using weakest precondition computations, whereas the direct method

103

is based on satisfiability checks. The main goal of the paper is to take steps
towards a formulation of both methods in the same framework, for the double
purpose of reasoning and implementation. Section 2 introduces the basic con-
cepts of predicate abstraction; Sections 3 and 4 then present the specific details
of each of the two methods we consider. Section 5 explains how we have im-
plemented and optimized the direct satisfiability method to produce Boolean
programs. Our first steps towards a formulation of the cartesian abstraction
method by using SAT checks are also described. Section 6 concludes the paper.

2 Predicate Abstraction

We start by defining formally the notions of model and existential abstraction.
A model M is defined by a triple (S, S0, T), where S is the set of states, S0 ⊆ S
is the set of initial states, and T ⊆ S × S is the transition relation. In what
follows we will require abstraction functions mapping states of a model into
states of another model, which we will extend to sets of states as expected. A
concretization function γ : S̄ → S mapping abstract states into some concrete
states is associated to each abstraction function.

Definition 1. A model M̄ = (S̄, S̄0, T̄) is an existential abstraction of another
model M = (S, S0, T) w.r.t. an abstraction function α : S → S̄ if

1. ∃s ∈ S0. α(s) = s̄ → s̄ ∈ S̄0

2. ∃(s, s′) ∈ T. α(s) = s̄ ∧ α(s′) = s̄′ → (s̄, s̄′) ∈ T̄

The minimal existential abstraction also satisfies the converse implications.

We will use one form of existential abstraction called predicate abstraction,
where we abstract data by keeping track of predicates on it; every operation
on the concrete model M will be translated to a Boolean operation on the
abstract model M̄ . Predicate abstraction can be applied in the model checking
of transition systems in general; when applied to software model checking, it
produces a Boolean program, i.e. a program whose only data consists of a set of
Boolean variables, with the same control-flow structure as the original program.

The idea is simple: given a predicate pi on the variables of the original pro-
gram, there will be a corresponding Boolean variable bi in the abstract Boolean
program; instructions in the original program will be abstracted into instruc-
tions on the Boolean variables, that reflect the effects of the original instructions
on the truth values of the predicate. In particular, sequences of assignment in-
structions are mapped into parallel assignments. As a very simple example, the
instruction x := -x would be abstracted with the predicates p1

.
= x ≤ 0, and

p2
.
= x > 0 as the following parallel assignment: b1,b2 := b2,b1.
Throughout the paper we will write E for the set of predicates used to con-

struct the abstraction, and V for the set of Boolean variables in the Boolean
program, with #V = #E . We will denote by E(b) the predicate that is repre-
sented by the variable b ∈ V , and extend this notion to Boolean expressions in
the natural way, for instance E(b1 ∧ b2) = E(b1) ∧ E(b2).

104

To see how this matches our general discussion of abstraction, let us denote
the set of Boolean values by B = {T, F}. A concrete state consists of the program
location l ∈ L and an assignment to its variables (for the sake of simplicity we
consider that concrete programs manipulate only integer variables). Given a
concrete state s, we will denote by bi(s) the logical value of the predicate E(bi)
in s. The corresponding abstract state s̄ consists of the program location l ∈ L
and a valuation of the propositional variables in V , ie, S̄ = L × Bn, where
n = #E. The abstraction function α will map a concrete state into an abstract
one, and is defined by: α(s) = (loc(s), b1(s), · · · , bn(s)).

Suppose that the original program contains a command assert A, and one
wants to model check the (safety) property that whenever the command is
reached the Boolean expression A is true. If A = pi ∈ E for some i, then
the command will be translated into assert bi in the Boolean program, which
can now be model-checked (if not, then a suitable expression constructed from
the bi must be used instead). The advantage of doing this is that the reacha-
bility problem for Boolean programs is decidable [1]. Dedicated model checkers
for Boolean programs include BEPOP [1] and BOOM [4]. Note that predicate
abstraction and Boolean model checking do not absolutely require working with
Boolean programs as we do here. We could calculate the abstraction at the level
of transition systems, and then model-check the abstract transition system using
a general-purpose model checker. This will be further explained in Section 3.

As stated before, how to choose and refine a suitable set of predicates for
a given program is outside the scope of this paper: we assume a fixed set E
is provided, and consider two methods to construct an abstraction based on
E. The methods differ only in the way that basic blocks of code (sequences
of assignment instructions) are treated: control-flow is basically preserved from
the concrete to the Boolean program. Also, the treatment of data structures
like arrays, structures, and pointers, is orthogonal to the choice of abstraction
method. As such, in what follows we will essentially consider basic blocks as
concrete programs, consisting of sequences of integer assignment instructions.

3 The Direct Method

The most straightforward way to compute a predicate abstraction is to interpret
Definition 1 at the level of programs and apply it directly with the help of
a satisfiability solver. The method is described at length in [9]; it is used in
practice in the MAGIC tool [6].

As an abstract state is given by the values of the propositional variables in V
induced by the logical values of the predicates in E (in a given concrete state),
one needs to test which combinations of logical values of the predicates before
and after execution of the block are feasible. For this we need first of all to have
a logical encoding of the block, which can be obtained by converting it to static
single assignment (SSA) form [11]. Take for instance the basic block:

P ≡ x := x + 10; y := y + 1

105

It is converted to the following: P ≡ x1 := x0 + 10; y1 := y0 + 1. The
logical encoding LP of P can now be written simply as a conjunction of equations,
LP ≡ x1 = x0 +10∧ y1 = y0 +1. This encoding can be applied to a much richer
language, including arrays, structures, and pointers [9].

Note that each variable in the concrete program is now represented by a fam-
ily (both of size 2, in the above example) of variables in its logical representation.
Of these we are only interested in the initial and final versions of each variable;
when considering the execution of a basic block we will in general denote by s
and s′ the program state expressed in terms respectively of the initial and final
versions of the variables, therefore bi(s) and bi(s

′) will denote the initial and final
values of the predicate E(bi). Consider again our example program and take for
instance V = {b1, b2} with E(b1) = x ≥ 0 and E(b2) = even(y). Then b1(s) is
x0 ≥ 0, b2(s) is even(y0), b1(s

′) is x1 ≥ 0, and b2(s
′) is even(y1).

Let us now introduce some basic definitions and notation. A literal is a
Boolean variable or its negation. Let V = {b1, . . . , bn} be a set of Boolean vari-
ables. A cube over V is a conjuntion of literals in which each of the variables of
V appears exactly once. A cover is a disjuntion of cubes. We let l, li, . . . range
over literals, and c, ci, c

′, . . . range over cubes. We will denote by CV the set
{c1, · · · , c2n} of all possible cubes over V . Note that each such cube uniquely
corresponds to a valuation of the propositional variables in V , and thus to an
abstract state. For instance the cube b1 ∧ ¬b2 corresponds to the abstract state
in which b1 is true and b2 is false.

Following existential abstraction, to decide whether to include in the abstract
model a transition from the state characterized by the cube ci to the state
characterized by the cube cj , it suffices to check the satisfiability of the formula

E(ci)(s) ∧ LP ∧ E(cj)(s
′)

Say, for the program and predicates given above, we wish to check the existence
of a transition from the state in which both predicates are false to the state in
which both are true. We check the satisfiability of

¬(x0 ≥ 0) ∧ ¬(even(y0)) ∧ x1 = x0 + 10 ∧ y1 = y0 + 1 ∧ x1 ≥ 0 ∧ even(y1)

Indeed the formula is satisfiable, for instance with x0 = −2 and y0 = 0, and the
transition will thus be included in the abstract model. The abstract transition
system can be constructed by exhaustively testing 22n formulas:

E(c1)(s) ∧ LP ∧ E(c1)(s
′)

...
E(c2n)(s) ∧ LP ∧ E(c2n)(s

′)

The formulas can be checked by an SMT solver using a theory of (unbounded)
integers, or, if one wishes to employ a fixed-size bitvector encoding of numbers
(that stands closer to the machine representation), by a SAT solver after bit-
blasting. Every satisfiable formula (corresponding to an abstract transition in the
model) from the above family is recorded, allowing us to calculate an assignment
table. In our example the solver would return the following table:

106

b1 b2 b′1 b′2
F F F T
F F T T
F T F F
F T T F
T F T T
T T T F

As described in [9], the method is used to produce an abstract transition sys-
tem, which the authors then export to a general-purpose symbolic model checker
to find property violations. But our interest is not in exporting the abstract
model in the form of a transition relation; instead, we would like to produce a
Boolean program. The reasons for this are twofold: first, specific model checkers
for Boolean programs are of course fine-tuned for this problem, and thus handle
it more efficiently. Second, other methods for generating predicate abstractions
produce Boolean programs natively, and so do most existing software model
checking tools; for the sake of uniformity (and to facilitate comparison) we also
choose to follow the latter approach.

4 Cartesian Abstraction by WP Computations

SLAM [2], the tool that might be called the most successful software model
checker (it has become a comercial product, currently shipped by Microsoft
as part of the Windows Driver Development Kit), uses a different method for
constructing predicate abstractions. It constructs less precise abstractions, and
naturally does so more efficiently than the direct method.

Let again P be a basic block and LP its logical encoding, E be the set of
predicates used to construct the predicate abstraction, and V the set of Boolean
variables. An alternative to using satisfiability tests is to employ weakest precon-
dition (WP) calculations. Recall that the weakest precondition of a basic block
with respect to a given assertion ψ is given by the following two rules:

wp(x := e,ψ)
.
= ψ[e/x] wp(C1;C2,ψ)

.
= wp(C1, (wp(C2,ψ)))

Recall the example program and predicates of the previous section. Then

wp(P,E(b1)) ≡ x ≥ 0[y + 1/y][x+ 10/x] ≡ x+ 10 ≥ 0

One way to construct an abstraction is to determine individually, for each
Boolean variable b ∈ V , the sets of states in which the weakest preconditions
wp(P,E(b)) and wp(P,E(¬b)), respectively, are satisfied. In the first set of states
execution of the block will make E(b) hold in the final state, thus the assignment
b := T should be executed by the Boolean program. In the second set of states
b := F should be executed, and in states in which neither wp(P,E(b)) nor
wp(P,E(¬b)) are satisfied, the assignment b := ∗, signaling a non-deterministic
assignment, should be executed. It is useful to employ the following function:

choose(pos ,neg) = pos ? T : (neg ? F : ∗)

107

The general idea is that the basic block can be abstracted by a parallel as-
signment of the form . . . , b, . . . := . . . , choose(wp(P ,E (b)),wp(P ,E (¬b))),
But this is of course not a valid Boolean program, since wp(P,E(b)) cannot be
expressed in terms of the Boolean variables. What we can do in the Boolean pro-
gram is to determine the combinations of values of the Boolean variables that
force each of the above WPs to hold. This can be formalized as follows. Given
an assertion ψ, let Sψ

V denote the following disjunction of cubes over V :

Sψ
V =

�
{c ∈ CV | |= E(c) → ψ}

(V will be dropped when clear from context) Note that constructing this set
requires 2n validity tests, where n = #V . Then P is abstracted by the following
Boolean program, where φi denotes the assertion wp(P,E(bi)):

b1 , · · · , bn := choose
�
Sφi ,S¬φi

�
, · · · , choose

�
Sφn ,S¬φn

�

Observe that computing the abstraction in this way requires testing the validity
of 2n× 2n formulas. This is still exponential, but also exponentially better than
the direct method. This method introduces more false positives than the direct
method because the different predicates are considered independently of each
other, thus contradictory states are present in the models. This is in fact what
is known as cartesian abstraction.

To understand this, consider that E consists of the two predicates E(b1) ≡
x ≥ 0 and E(b2) ≡ x ≤ 100. This produces an unsatisfiable cube: E(¬b1∧¬b2) ≡
x < 0 ∧ x > 100, which is a contradiction, and would be included in Sψ

V for
any condition ψ: there exists a transition from the state corresponding to the
unsatisfiable cube to any other state. Moreover, transitions into this state could
also be present, since the WPs are computed independently for E(b1) and E(b2).
Compare this to what would happen with the direct method: any satisfiability
formula involving a contradictory state, of the form

E(¬b1 ∧ ¬b2)(s) ∧ LP ∧ E(cj)(s
′) or E(ci)(s) ∧ LP ∧ E(¬b1 ∧ ¬b2)(s′)

is UNSAT, and rejected from the assignment table. Thus the corresponding
transitions will not be inserted in the construction of the abstract model.

5 Implementation of Predicate Abstraction Algorithms

Implementing the Direct Method. The description of the direct method in
Section 3 is just the first half of the story: we have indeed identified the valid
transitions in the abstract model, but our goal is to produce a Boolean program.
In this section we explain how we have implemented the direct algorithm so that
it outputs a Boolean program.

Our goal is to abstract a basic block as a parallel assignment of Boolean
variables of the form b1, . . . , bn := e1, . . . , en. The task is then to find the right-
hand side expressions e1, . . . , en, given an assignment table. To this end the table

108

is first divided into n tables, one for each variable in the final state. Each resulting
table is then divided into its ON-set and OFF-set (that is, the assignments that
turn each output variable to T and F, respectively). In our example this yields
the two tables shown on the left below.

b1 b2 b′1
F F T
F T T
T F T
T T T

F F F
F T F

b1 b2 b′2
F F T
F F T
T F T

F T F
F T F
T T F

b1 b2 b′1
T F T
T T T

F F *
F T *

b1 b2 b′2
F F T
T F T

F T F
T T F

Note that the first table contains non-determinism: the same combination of
values of b1 and b2 may result in different values for b′1. The second table on the
other hand contains redundancy (repeated entries than can be removed). We
rewrite and simplify the tables as shown on the right. Note that the first table
now has what one might call an UNDET-set rather than an OFF-set. The ON,
OFF and UNDET-sets constitute a partition of the set of assigments according
to the possible results of the output variable. Each of these sets is captured by
a Boolean formula which is the disjunction of the cubes that characterize each
assigment in the set. We call these formulas respectively ON, OFF and UNDET-
covers. We let ONi (resp. OFFi) denote the ON-cover (resp. OFF-cover) for b′i.

A parallel assignment can be directly extracted from these tables by using
these covers: b1, b2 := ((b1∧¬b2)∨(b1∧b2)? T : ∗), ((¬b1∧¬b2)∨(b1∧¬b2)? T : F),
which can in turn be simplified to b1, b2 := (b1? T : ∗), (¬b2? T : F). If the
UNDET-set is not empty a nested conditional expression will have to be used.
In fact, although this has to our knowledge never been made explicit, the parallel
assignment can be written as follows using the choose function of Section 4:

b1, · · · , bn := choose(ON1,OFF1), · · · , choose(ONn,OFFn)

It is clear from this small example that it would be infeasible to export a
Boolean program without first attempting to simplify the assigned expressions;
let us now describe how we have implemented this simplification.

Boolean simplification. The minimization of a Boolean function is a well-known
problem in the area of logic circuit design: a circuit with a large number of
logic gates (equivalent to a complex Boolean function) takes up a lot of physical
space in its implementation. This problem is believed to be intractable [14], but
there exist effective heuristics for it, such as Karnaugh Maps and the Quine-
McCluskey algorithm. Our testbed is implemented using a functional program-
ming language; for this reason we have opted for a recursive algorithm based on
the prime consensus theorem, described in R. Rudell’s thesis [15] (Sect. 2.5.1).

First, let us introduce some definitions and notation. In what follows a cube
is simply a conjuntion of literals. Associativity, commutativity and idempotence
of conjuntions and disjuntion allow us to treat each cube as a set of literals and
each cover as a set of sets of literals.

109

Given two cubes, c, c′, we say they differ in a variable x if x ∈ c and ¬x ∈ c′

(or vice-versa). The distance between c and c′, written dist(c, c′) is the number
of variables where they differ. When dist(c, c′) = 0 we say that c and c′ intersect
and the intersecting cube is c ∪ c′.

The consensus of two non-intersecting cubes, c and c′, consensus(c, c′), is
defined as follows: if dist(c, c′) ≥ 2, their consensus is empty; if dist(c, c′) = 1,
their consensus is (c ∪ c′) − {x,¬x}, assuming c, c′ differ in x. The notion of
consensus is lifted to sets of cubes, as the pairwise consensus of the two sets.

Given two cubes, c, c′, we say that c′ is single-cube contained in c if c ⊆ c′.
Given a set of cubes C, the single-cube containment of C is the set SCC(C) =
{c | ∃c, c′ ∈ C. c �= c′ ∧ c ⊆ c′}. Let f be a Boolean function. A cube c is an
implicant of f whenever c → f . Moreover, we say that c is a prime implicant of
f if c is minimal, i.e., there is no other implicant of c except itself. The set of
prime implicants of f is denoted by primes(f).

We can now state the fundamental theorem that stands at the heart of the
simplification algorithm we have implemented.

Theorem 1 (Prime consensus theorem). Let f be a Boolean function and
let x be any input variable. The set of prime implicants of f can be partitioned
into three sets: Px = {c ∈ primes(f) | x ∈ c}, P¬x = {c ∈ primes(f) | ¬x ∈ c}
and P∗ = {c ∈ primes(f) | x �∈ c ∧ ¬x �∈ c}. Then,

∀c ∈ P∗.∃c ∈ Px.∃c′ ∈ P¬x. c = consensus(c, c′)

This theorem states that P∗ ⊆ consensus(Px, P¬x), because the consensus of
Px, P¬x may contain non-prime implicants. We can get rid of such non-primes
by constructing the single-cube containment of that set. We have

P∗ = SCC(consensus(Px, P¬x))

Now that we know how to generate P∗ from Px and P¬x, let us focus on the
construction of Px and P¬x given a cover F of a Boolean function, and an input
variable x.

A cofactor of F with respect to a literal l, written Fl, is defined as follows
Fl = {c − {l} | c ∈ F ∧ l ∈ c}. In fact, Pl ⊆ {l} ∪ primes(Fl). So, as before, we
have to get rid of the non-primes.

The following theorem summarizes how the prime implicants of a Boolean
function f can be generated recursively, and is effectively an algorithm outline.

Theorem 2 (Recursive prime generation theorem). Let f be a Boolean
function with (ON+UNDET)-cover F and let x be any input variable. Then, the
prime implicants of f can be generated as follows:

primes(f) = SCC(Ax ∪A¬x ∪ consensus(Ax, A¬x)) , where Al = {l} ∪ primes(Fl)

Note that in this divide and conquer approach, the choice of division point (the
splitting variable x) will have major impact on the algorithm’s efficiency. Clever
rules for termination have been proposed that can speed up the process [15].

110

Handling variable initialization and optimizations. The predicate abstraction
constructed by this method naturally eliminates transitions from and to states
corresponding to unsatisfiable cubes, as shown at the end of Section 4.

We have introduced two modifications in the original algorithm, which we
now describe. The first has to do with the fact that this method does not deal
well with variable initialization in the presence of unsatisfiable cubes. To see
this, let P be the basic block x := 10, with the two previous predicates. Clearly
the block should be abstracted to the Boolean program b1, b2 := T, T. For this,
the expected assignment table would be:

b1 b2 b′1 b′2
T T T T
T F T T
F T T T
F F T T

Observe that the last row will not be in the table, since the following is not
satisfiable (x0 cannot be smaller than 0 and greater than 100 at the same time):

(x1 = 10) ∧ ¬(x0 ≥ 0) ∧ ¬(x0 ≤ 100) ∧ (x1 ≥ 0) ∧ (x1 ≤ 100)

Our guess is that tools based on the direct method calculate predicate abstrac-
tions after running a constant propagation transformation. We propose a modi-
fication of the algorithm that does not require this transformation.

The second modification is an optimization: we initially run a battery of
satisfiability checks of formulas combining the program and the post-state cubes.
Admittedly this takes time 2n, but observe that for each unsatisfiable cube
found we save 2n checks, one for each pre-state cube. Moreover, this initial
round of checks also eliminates 2n checks for every post-state corresponding to
a cube that, although satisfiable, can never be attained by the program (such as
b1 ∧ ¬b2 ≡ x > 100 in the example). This is trivially correct, since we are only
eliminating from the assignment table (by factoring) unsatisfiable rows.

Abstraction algorithm. We have introduced simple modifications on the algo-
rithm described in [9], which are able to prevent the erroneous abstractions
produced by inconsistent states as described previously. Moreover, the resulting
algorithm seems to dramatically reduce the number of solver calls.

Definition 2 (Dependent variable). Let P be a basic block, we say that a
given variable x ∈ V ars(P) is dependent if the initial value of x in the pre-state
is used in P (i.e. x is read before it is written). If P is a basic block in SSA
form, x is dependent if x0 occurs in P .

Let P be a basic block, E a set of predicates, CV the set of all possible cubes of
E and LP the logic encoding of P . Our algorithm computes the assignment table
of P , by calculating for each possible satisfiable and attainable post-state, which
pre-states can lead to it (note that for the pre-state we instantiate only the pred-
icates where dependent variables occur). The pseudo-code is presented as Algo-
rithm 1, where some auxiliary functions are used. addAllCombinationsFor(pos)

111

Algorithm 1 Abstraction of Basic Blocks
for posc ∈ cubesOf (E) do

posf ← Lp ∧ instantiate(poststate, posc)
if solve(posf) = SAT then

preds ← {p ∈ E : varsOf (p) ∩ dependentVariables(Lp) �= ∅}
if preds = ∅ then addAllCombinationsFor(posc)
else

for prec ∈ cubesOf (preds) do
fullf ← posf ∧ instantiate(prestate, prec)
if solve(fullf) = SAT then

addLines(posc, interpolate(independentVariables(Lp), prec))
end if

end for
end if

end if
end for

appends every possible cube with pos and appends the result to the assignment
table. interpolate(vars, cube) completes the cube by combining it with every pos-
sible combination of vars, in the correct positions. addLines simply adds rows
to the assignment table. An example run is presented in the appendix.

Implementing Cartesian Abstraction. At the time of writing we have imple-
mented cartesian abstraction by weakest precondition calculations in a straight-
forward way, following Section 4. Our implementation still produces unsimplified
parallel Boolean assignments – it is not straightforward to apply here the sim-
plification techniques implemented for the direct method, since the expressions
to be simplified are not assignment table covers. An example of the unsimplified
output can be found in the appendix.

We are presently investigating how cartesian abstraction can be implemented
based on satisfiability checks, rather than WP computations and validity checks.
Recall that the basis of the algorithm is the computation:

Swp(P,E(bi)) =
�

{c ∈ CV | |= E(c) → wp(P,E(bi))}

A first observation to make is that in the SSA setting weakest preconditions
can be computed without substitution, based on the same logical encoding of a
program used in the direct method [12]. The above can be written instead as

S
wp(P,E(bi)) =

��
c ∈ CV | |= E(c)(s) → LP → E(bi)(s

′
)
�

=
��

c ∈ CV | UNSAT (E(c)(s) ∧ LP ∧ ¬E(bi)(s
′
)
�
}

which provides a basis for the relation we are seeking to establish. Indeed,
the above satisfiability problems are very close to the formulas E(ci)(s) ∧ LP ∧
E(cj)(s

′) checked for satisfiability in the direct method. We are presently inves-
tigating this relation with the aim of producing a common backbone for both
implementations, using the same Boolean simplification functionality.

112

6 Conclusion

In this paper we have discussed the calculation of predicate abstractions for basic
blocks of code, and how, based on the prime consensus theorem, we have adapted
the direct abstraction technique to produce Boolean programs, introducing mod-
ifications for correctly handling variable initialization, as well as optimizations
that substantially reduce the number of necessary calls to the solver. Note that
we are not claiming to have produced an algorithm that performs better than
working tools based on the direct method, because these tools also incorporate
many other optimizations (not fully documented). Furthermore, our algorithm
needs benchmarking since it has only been tested with small programs.

With respect to cartesian abstraction, the use of simplified rules for calculat-
ing WPs of SSA code, together with our implementation of the direct method
based on assignment tables, clearly point to the existence of a common frame-
work in which both methods can be expressed, which we believe has never been
identified. This will allow us to apply our simplification module to cartesian
abstraction, as well as to establish a formal relation between both methods.

Although not described in detail here, our implementation also handles con-
trol flow constructs (branching and looping) in addition to basic blocks. Consider
for instance the code shown below at the left:

P;
while (c1) loop

Q;
if (c2) then

R;
end if;

end loop;
S;

AP;
while (b1) loop

AQ;
if (b2) then

AR;
end if;

end loop;
AS;

Under the assumption that the Boolean conditions c1 and c2 belong to the set E
of predicates used to construct the abstraction, it is straightforward to produce
the abstraction of this fragment: it suffices to preserve the control flow structure
in the resulting Boolean program, replacing the conditions by the corresponding
Boolean variables. Let E(b1) = c1 and E(b2) = c2, and AP, AQ, AR, AS, be the
abstractions of the basic blocks P, Q, R, and S respectively. We obtain the Boolean
program shown on the right. In the more general case, when the conditions
contain subformulas that are not part of E, some heuristic must be used to
decide how to simulate the behavior of the concrete program. Different software
model checkers propose different solutions, that we leave outside our discussion.
In practice this is rarely required, since the controw-flow conditions are often
chosen as predicates of E, or added by a refinement algorithm when a spurious
counterexample passing through this location is found.

Our current prototype handles a subset of the SPARK Ada programming
language [3], widely used in the development of safety-critical software, and is
part of a larger effort, which also includes the development of a bounded model
checker for SPARK programs. It handles simple blocks by the two methods
described in Section 5, and control-flow as described above. We are currently
focusing on a satisfiability-based formulation of cartesian abstraction, to improve

113

our WP-based implementation. As future work, our priority is to implement (i)
a laboratory for experimenting with different techniques and optimizations over
a common backbone; and (ii) a refinement loop combining abstraction methods,
including transition refinement and counterexample validation.

References

1. Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for
boolean programs. In Procs. of the 7th International SPIN Workshop (SPIN’00),
pages 113–130, London, UK, 2000. Springer-Verlag.

2. Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In Gérard Berry,
Hubert Comon, and Alain Finkel, editors, CAV, volume 2102 of Lecture Notes in
Computer Science, pages 260–264. Springer, 2001.

3. John Barnes. High Integrity Software: The SPARK Approach to Safety and Secu-
rity. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

4. Gerard Basler, Matthew Hague, Daniel Kroening, C.-H. Luke Ong, Thomas Wahl,
and Haoxian Zhao. Boom: taking boolean program model checking one step fur-
ther. In Proceedings of the 16th international conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’10, pages 145–149, Berlin,
Heidelberg, 2010. Springer-Verlag.

5. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. Bounded model checking. Advances in Computers, 58:118–149, 2003.

6. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in c. IEEE Trans. Softw. Eng., 30(6):388–402, June 2004.

7. Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: algo-
rithmic verification and debugging. Commun. ACM, 52:74–84, November 2009.

8. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. In Procs. of POPL’92, pages 343–354, New York, USA, 1992. ACM.

9. Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predi-
cate abstraction of ANSI-C programs using sat. Formal Methods in System Design,
25(2-3):105–127, 2004.

10. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM Symposium on Principles of Programming
Languages, pages 238–252, January 1977.

11. Ron Cytron, Jeanne Ferrante, BK Rosen, Mark N Wegman, and F. K. Zadeck.
Efficiently Computing Static Single Assignment Form and the Control Dependence
Graph. ACM Transactions on Programming Languages and Systems, 13(4):451–
490, October 1991.

12. Daniela da Cruz, Maria João Frade, and Jorge Sousa Pinto. Verification conditions
for single-assignment programs. In Proceedings of the 27th ACM Symposium On
Applied Computing (SAC’12), pages 1264–1270. ACM, 2012.

13. Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with pvs. In
Orna Grumberg, editor, CAV, volume 1254 of Lecture Notes in Computer Science,
pages 72–83. Springer, 1997.

14. Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings
of the thirty-second annual ACM symposium on Theory of computing, STOC ’00,
pages 73–79, New York, NY, USA, 2000. ACM.

15. Richard L. Rudell. Logic Synthesis for VLSI Design. PhD thesis, EECS Depart-
ment, University of California, Berkeley, 1989.

114

